Displaying all 5 publications

Abstract:
Sort:
  1. Lara A, Cong Y, Jahrling PB, Mednikov M, Postnikova E, Yu S, et al.
    PLoS Negl Trop Dis, 2019 06;13(6):e0007454.
    PMID: 31166946 DOI: 10.1371/journal.pntd.0007454
    The ability to appropriately mimic human disease is critical for using animal models as a tool for understanding virus pathogenesis. In the case of Nipah virus (NiV), infection of humans appears to occur either through inhalation, contact with or consumption of infected material. In two of these circumstances, respiratory or sinusoidal exposure represents a likely route of infection. In this study, intermediate-size aerosol particles (~7 μm) of NiV-Malaysia were used to mimic potential routes of exposure by focusing viral deposition in the upper respiratory tract. Our previous report showed this route of exposure extended the disease course and a single animal survived the infection. Here, analysis of the peripheral immune response found minimal evidence of systemic inflammation and depletion of B cells during acute disease. However, the animal that survived infection developed an early IgM response with rapid development of neutralizing antibodies that likely afforded protection. The increase in NiV-specific antibodies correlated with an expansion of the B cell population in the survivor. Cell-mediated immunity was not clearly apparent in animals that succumbed during the acute phase of disease. However, CD4+ and CD8+ effector memory cells increased in the survivor with correlating increases in cytokines and chemokines associated with cell-mediated immunity. Interestingly, kinetic changes of the CD4+ and CD8bright T cell populations over the course of acute disease were opposite from animals that succumbed to infection. In addition, increases in NK cells and basophils during convalescence of the surviving animal were also evident, with viral antigen found in NK cells. These data suggest that a systemic inflammatory response and "cytokine storm" are not major contributors to NiV-Malaysia pathogenesis in the AGM model using this exposure route. Further, these data demonstrate that regulation of cell-mediated immunity, in addition to rapid production of NiV specific antibodies, may be critical for surviving NiV infection.
  2. Walpita P, Cong Y, Jahrling PB, Rojas O, Postnikova E, Yu S, et al.
    NPJ Vaccines, 2017;2:21.
    PMID: 29263876 DOI: 10.1038/s41541-017-0023-7
    Nipah virus is a highly lethal zoonotic paramyxovirus that was first recognized in Malaysia during an outbreak in 1998. During this outbreak, Nipah virus infection caused a severe febrile neurological disease in humans who worked in close contact with infected pigs. The case fatality rate in humans was approximately 40%. Since 2001, NiV has re-emerged in Bangladesh and India where fruit bats (Pteropus spp.) have been identified as the principal reservoir of the virus. Transmission to humans is considered to be bat-to-human via food contaminated with bat saliva, or consumption of contaminated raw date palm sap, although human-to-human transmission of Nipah virus has also been documented. To date, there are no approved prophylactic options or treatment for NiV infection. In this study, we produced mammalian cell-derived native Nipah virus-like particles composed of Nipah virus G, F and M proteins for use as a novel Nipah virus vaccine. Previous studies demonstrated that the virus-like particles were structurally similar to authentic virus, functionally assembled and immunoreactive. In the studies reported here, purified Nipah virus-like particles were utilized either alone or with adjuvant to vaccinate golden Syrian hamsters with either three-dose or one-dose vaccination regimens followed by virus challenge. These studies found that Nipah virus-like particle immunization of hamsters induced significant neutralizing antibody titers and provided complete protection to all vaccinated animals following either single or three-dose vaccine schedules. These studies prove the feasibility of a virus-like particle-based vaccine for protection against Nipah virus infection.
  3. Jensen KS, Adams R, Bennett RS, Bernbaum J, Jahrling PB, Holbrook MR
    PLoS One, 2018;13(6):e0199534.
    PMID: 29920552 DOI: 10.1371/journal.pone.0199534
    Nipah virus (NiV) is a highly pathogenic zoonotic paramyxovirus that can result in severe pulmonary disease and fatal encephalitis in humans and is responsible for outbreaks in Bangladesh, Malaysia, Singapore, India and possibly the Philippines. NiV has a negative-sense RNA genome that contains six genes and serves as a template for production of viral mRNA transcripts. NiV mRNA transcripts are subsequently translated into viral proteins. Traditionally, NiV quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) assays have relied on using primer sets that amplify a target (N that encodes the nucleocapsid) within the coding region of the viral gene that also amplifies viral mRNA. Here we describe a novel one-step qRT-PCR assay targeting the intergenic region separating the viral F and G proteins, thereby eliminating amplification of the viral mRNA. This assay is more accurate than the traditional qRT-PCR in quantifying concentrations of viral genomic RNA.
  4. Cong Y, Lentz MR, Lara A, Alexander I, Bartos C, Bohannon JK, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005532.
    PMID: 28388650 DOI: 10.1371/journal.pntd.0005532
    Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8-10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition.
  5. Lee JH, Hammoud DA, Cong Y, Huzella LM, Castro MA, Solomon J, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S419-S430.
    PMID: 31687756 DOI: 10.1093/infdis/jiz502
    Nipah virus (NiV) is an emerging virus associated with outbreaks of acute respiratory disease and encephalitis. To develop a neurological model for NiV infection, we exposed 6 adult African green monkeys to a large-particle (approximately 12 μm) aerosol containing NiV (Malaysian isolate). Brain magnetic resonance images were obtained at baseline, every 3 days after exposure for 2 weeks, and then weekly until week 8 after exposure. Four of six animals showed abnormalities reminiscent of human disease in brain magnetic resonance images. Abnormalities ranged from cytotoxic edema to vasogenic edema. The majority of lesions were small infarcts, and a few showed inflammatory or encephalitic changes. Resolution or decreased size in some lesions resembled findings reported in patients with NiV infection. Histological lesions in the brain included multifocal areas of encephalomalacia, corresponding to known ischemic foci. In other regions of the brain there was evidence of vasculitis, with perivascular infiltrates of inflammatory cells and rare intravascular fibrin thrombi. This animal model will help us better understand the acute neurological features of NiV infection and develop therapeutic approaches for managing disease caused by NiV infection.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links