Displaying all 4 publications

Abstract:
Sort:
  1. Sa'adi Z, Al-Suwaiyan MS, Yaseen ZM, Tan ML, Goliatt L, Heddam S, et al.
    J Environ Manage, 2024 May 11;360:121087.
    PMID: 38735071 DOI: 10.1016/j.jenvman.2024.121087
    Climate change has significantly altered the characteristics of climate zones, posing considerable challenges to ecosystems and biodiversity, particularly in Borneo, known for its high species density per unit area. This study aimed to classify the region into homogeneous climate groups based on long-term average behavior. The most effective parameters from the high-resolution daily gridded Princeton climate datasets spanning 65 years (1950-2014) were utilized, including rainfall, relative humidity (RH), temperatures (Tavg, Tmin, Tmax, and diurnal temperature range (DTR)), along with elevation data at 0.25° resolution. The FCM clustering method outperformed K-Mean and two Ward's hierarchical methods (WardD and WardD2) in classifying Borneo's climate zones based on multi-criteria assessment, exhibiting the lowest average distance (2.172-2.180) and the highest compromise programming index (CPI)-based correlation ranking among cluster averages across all climate parameters. Borneo's climate zones were categorized into four: 'Wet and cold' (WC) and 'Wet' (W) representing wetter zones, and 'Wet and hot' (WH) and 'Dry and hot' (DH) representing hotter zones, each with clearly defined boundaries. For future projection, EC-Earth3-Veg ranked first for all climate parameters across 961 grid points, emerging as the top-performing model. The linear scaling (LS) bias-corrected EC-Earth3-Veg model, as shown in the Taylor diagram, closely replicated the observed datasets, facilitating future climate zone reclassification. Improved performance across parameters was evident based on MAE (35.8-94.6%), MSE (57.0-99.5%), NRMSE (42.7-92.1%), PBIAS (100-108%), MD (23.0-85.3%), KGE (21.1-78.1%), and VE (5.1-9.1%), with closer replication of empirical probability distribution function (PDF) curves during the validation period. In the future, Borneo's climate zones will shift notably, with WC elongating southward along the mountainous spine, W forming an enclave over the north-central mountains, WH shifting northward and shrinking inland, and DH expanding northward along the western coast. Under SSP5-8.5, WC is expected to expand by 39% and 11% for the mid- and far-future periods, respectively, while W is set to shrink by 46%. WH is projected to expand by 2% and 8% for the mid- and far-future periods, respectively. Conversely, DH is expected to expand by 43% for the far-future period but shrink by 42% for the mid-future period. This study fills a gap by redefining Borneo's climate zones based on an increased number of effective parameters and projecting future shifts, utilizing advanced clustering methods (FCM) under CMIP6 scenarios. Importantly, it contributes by ranking GCMs using RIMs and CPI across multiple climate parameters, addressing a previous gap in GCM assessment. The study's findings can facilitate cross-border collaboration by providing a shared understanding of climate dynamics and informing joint environmental management and disaster response efforts.
  2. Yaseen ZM, Melini Wan Mohtar WH, Homod RZ, Alawi OA, Abba SI, Oudah AY, et al.
    Chemosphere, 2024 Jan 29;352:141329.
    PMID: 38296204 DOI: 10.1016/j.chemosphere.2024.141329
    This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sediments owing to anthropogenic activities. A heuristic algorithm based on the potential of RVM and a flower pollination algorithm (RVM-FPA) was developed to improve the prediction performance. Several evaluation indicators and graphical methods coupled with visualized cumulative probability function (CDF) were used to evaluate the accuracy of the models. Akaike (AIC) and Schwarz (SCI) information criteria based on Dickey-Fuller (ADF) and Philip Perron (PP) tests were introduced to check the reliability and stationarity of the data. The prediction performance in the verification phase indicated that RVM-M2 (PBAIS = -o.0465, MAE = 0.0335) and ENN-M2 (PBAIS = 0.0043, MAE = 0.0322) emerged as the best model for As (mg/kg) and Zn (mg/kg), respectively. In contrast with the standalone approaches, the simulated hybrid RVM-FPA proved merit and the most reliable, with a 5 % and 18 % predictive increase for As (mg/kg) and Zn (mg/kg), respectively. The study's findings validated the potential for estimating complex HMs through intelligent data-driven models and heuristic optimization. The study also generated valuable insights that can inform the decision-makers and stockholders for environmental management strategies.
  3. Hai T, Ahmadianfar I, Halder B, Heddam S, Al-Areeq AM, Demir V, et al.
    PMID: 38653893 DOI: 10.1007/s11356-024-33027-0
    River water quality management and monitoring are essential responsibilities for communities near rivers. Government decision-makers should monitor important quality factors like temperature, dissolved oxygen (DO), pH, and biochemical oxygen demand (BOD). Among water quality parameters, the BOD throughout 5 days is an important index that must be detected by devoting a significant amount of time and effort, which is a source of significant concern in both academic and commercial settings. The traditional experimental and statistical methods cannot give enough accuracy or solve the problem for a long time to detect something. This study used a unique hybrid model called MVMD-LWLR, which introduced an innovative method for forecasting BOD in the Klang River, Malaysia. The hybrid model combines a locally weighted linear regression (LWLR) model with a wavelet-based kernel function, along with multivariate variational mode decomposition (MVMD) for the decomposition of input variables. In addition, categorical boosting (Catboost) feature selection was used to discover and extract significant input variables. This combination of MVMD-LWLR and Catboost is the first use of such a complete model for predicting BOD levels in the given river environment. In addition, an optimization process was used to improve the performance of the model. This process utilized the gradient-based optimization (GBO) approach to fine-tune the parameters and better the overall accuracy of predicting BOD levels. To assess the robustness of the proposed method, we compared it to other popular models such as kernel ridge (KRidge) regression, LASSO, elastic net, and gaussian process regression (GPR). Several metrics, comprising root-mean-square error (RMSE), R (correlation coefficient), U95% (uncertainty coefficient at 95% level), and NSE (Nash-Sutcliffe efficiency), as well as visual interpretation, were used to evaluate the predictive efficacy of hybrid models. Extensive testing revealed that, in forecasting the BOD parameter, the MVMD-LWLR model outperformed its competitors. Consequently, for BOD forecasting, the suggested MVMD-LWLR optimized with the GBO algorithm yields encouraging and reliable results, with increased forecasting accuracy and minimal error.
  4. Tao H, Aldlemy MS, Homod RZ, Aksoy M, Mohammed MKA, Alawi OA, et al.
    Sci Rep, 2024 Aug 27;14(1):19882.
    PMID: 39191833 DOI: 10.1038/s41598-024-69648-1
    This research explores the feasibility of using a nanocomposite from multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) for thermal engineering applications. The hybrid nanocomposites were suspended in water at various volumetric concentrations. Their heat transfer and pressure drop characteristics were analyzed using computational fluid dynamics and artificial neural network models. The study examined flow regimes with Reynolds numbers between 5000 and 17,000, inlet fluid temperatures ranging from 293.15 to 333.15 K, and concentrations from 0.01 to 0.2% by volume. The numerical results were validated against empirical correlations for heat transfer coefficient and pressure drop, showing an acceptable average error. The findings revealed that the heat transfer coefficient and pressure drop increased significantly with higher inlet temperatures and concentrations, achieving approximately 45.22% and 452.90%, respectively. These results suggested that MWCNTs-GNPs nanocomposites hold promise for enhancing the performance of thermal systems, offering a potential pathway for developing and optimizing advanced thermal engineering solutions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links