Suppressing the Leidenfrost effect can significantly improve heat transfer from a heated substrate to a droplet above it. In this work, we demonstrate that by generating high frequency acoustic wave in the droplet, at sufficient vibration displacement amplitudes, the Leidenfrost effect can be suppressed due to the acoustic radiation pressure exerted on the liquid-vapor interface; strong capillary waves are observed at the liquid-vapor interface and subsequently leads to contact between the liquid and the heated substrate. Using this technique, with 10(5)Hz vibration frequency and 10(-6)m displacement amplitude of the acoustic transducer, a maximum of 45% reduction of the initial temperature (T0∼200-300°C) of the heated substrate can be achieved with a single droplet of volume 10(-5)l.
The ability to suppress the Leidenfrost effect is of significant importance in applications that require rapid and efficient cooling of surfaces with temperature higher than the Leidenfrost point TSL. The Leidenfrost effect will result in substantial reduction in cooling efficiency and hence there have been a few different approaches to suppress the Leidenfrost effect. The majority of these approaches relies on fabricating micro/nano-structures on heated surfaces, others rely on inducing an electric field between the droplets and the heated surfaces. In this paper, we present an approach that induces low frequency vibrations (f∼10(2) Hz) on a heated surface to suppress the effect. By mapping the different magnitudes of surface acceleration [greek xi with two dots above]sversus different initial surface temperatures Ts of the substrate, three regimes that represent three distinct impact dynamics are analyzed. Regime-I represents gentle film boiling ([greek xi with two dots above]s∼10(2) m s(-2) and Ts∼TSL), which is associated with the formation of thin spreading lamella around the periphery of the impinged droplet; Regime-II ([greek xi with two dots above]s∼10(2) m s(-2) and Ts>TSL) represents film boiling, which is associated with the rebound of the impinged droplet due to the presence of a thick vapor layer; Regime-III ([greek xi with two dots above]s∼10(3) m s(-2) and Ts∼TSL) represents contact boiling, which is associated with the ejection of tiny droplets due to the direct contact between the droplet and the heated surface. The estimated cooling enhancement for Regime-I is between 10% and 95%, Regime-II is between 5% and 15%, and Regime-III is between 95% and 105%. The improvement in cooling enhancement between Regime-I (strong Leidenfrost effect) and Regime-III (suppressed Leidenfrost effect) is more than 80%, demonstrating the effectiveness of using low frequency vibrations to suppress the Leidenfrost effect.
The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.
The ability to drive microcentrifugation for efficient micromixing and particle concentration and separation on a microfluidic platform is critical for a wide range of lab-on-a-chip applications. In this work, we investigate the use of amplitude modulation to enhance the efficiency of the microcentrifugal recirculation flows in surface acoustic wave microfluidic systems, thus concomitantly reducing the power consumption in these devices for a given performance requirement-a crucial step in the development of miniaturized, integrated circuits for true portable functionality. In particular, we show that it is possible to obtain an increase of up to 60% in the acoustic streaming velocity in a microdroplet with kHz order modulation frequencies due to the intensification in Eckart streaming; the streaming velocity is increasing as the modulation index is increased. Additionally, we show that it is possible to exploit this streaming enhancement to effect improvements in the speed of particle concentration by up to 70% and the efficiency of micromixing by 50%, together with a modest decrease in the droplet temperature.
We exploit the possibility of enhancing the molecular transport of liquids through graphene films using amplitude modulated surface acoustic waves (SAWs) to demonstrate effective and efficient nanoparticle filtration. The use of the SAW, which is an extremely efficient means for driving microfluidic transport, overcomes the need for the large mechanical pumps required to circumvent the large pressure drops encountered in conventional membranes for nanoparticle filtration. 100% filtration efficiency was obtained for micron-dimension particulates, decreasing to only 95% for the filtration of particles of tens of nanometers in dimension, which is comparable to that achieved with other methods. To circumvent clogging of the film, which is typical with all membrane filters, a backwash operation to flush the nanoparticles is incorporated simply by reversing the SAW-induced flow such that 98% recovery of the initial filtration rate is recovered. Given these efficiencies, together with the low cost and compact size of the chipscale SAW devices, we envisage the possibility of scaling out the process by operating a large number of devices in parallel to achieve typical industrial-scale throughputs with potential benefits in terms of substantially lower capital, operating and maintenance costs.
We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.
The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications.
Rayleigh surface acoustic waves (SAWs) have been demonstrated as a powerful and effective means for driving a wide range of microfluidic actuation processes. Traditionally, SAWs have been generated on piezoelectric substrates, although the cost of the material and the electrode deposition process makes them less amenable as low-cost and disposable components. As such, a "razor-and-blades" model that couples the acoustic energy of the SAW on the piezoelectric substrate through a fluid coupling layer and into a low-cost and, hence, disposable silicon superstrate on which various microfluidic processes can be conducted has been proposed. Nevertheless, it was shown that only bulk vibration in the form of Lamb waves can be excited in the superstrate, which is considerably less efficient and flexible in terms of microfluidic functionality compared to its surface counterpart, that is, the SAW. Here, we reveal an extremely simple way that quite unexpectedly and rather nonintuitively allows SAWs to be generated on the superstrate-by coating the superstrate with a thin gold layer. In addition to verifying the existence of the SAW on the coated superstrate, we carry out finite-difference time domain numerical simulations that not only confirm the experimental observations but also facilitate an understanding of the surprising difference that the coating makes. Finally, we elucidate the various power-dependent particle concentration phenomena that can be carried out in a sessile droplet atop the superstrate and show the possibility for simply carrying out rapid and effective microcentrifugation-a process that is considerably more difficult with Lamb wave excitation on the superstrate.
A graphene nanoplatelet (GNP) coating is utilized as a functionalized surface in enhancing the evaporation rate of micro-spray cooling for light-emitting diodes (LEDs). In micro-spray cooling, water is atomized into micro-sized droplets to reduce the surface energy and to increase the surface area for evaporation. The GNP coating facilitates the effective filmwise evaporation through the attribute of fast water permeation. The oxygenated functional groups of GNPs provide the driving force that initiates the intercalation of water molecules through the carbon nanostructure. The water molecules slip through the frictionless passages between the hydrophobic carbon walls, resulting an effective filmwise evaporation. The enhancement of evaporation leads to an enormous temperature reduction of 61.3 °C. The performance of the LED is greatly enhanced: a maximum increase in illuminance of 25% and an extension of power rating from 9 W to 12 W can be achieved. With the application of GNP coating, the high-temperature region is eliminated while maintaining the LED surface temperature for optimal operation. This study paves the way for employing the effective hybrid spray-evaporation-nanostructure technique in the development of a compact, low-power-consumption cooling system.
The ultrafast water transport in graphene nanoplatelets (GNPs) coating is attributed to the low friction passages formed by pristine graphene and the hydrophilic functional groups which provide a strong interaction force to the water molecules. Here, we examine the influence of the supporting substrate on the ultrafast water transport property of multilayer graphene coatings experimentally and by computational modelling. Thermally cured GNPs manifesting ultrafast water permeation are coated on different substrate materials, namely aluminium, copper, iron and glass. The physical and chemical structures of the GNPs coatings which are affected by the substrate materials are characterized using various spectroscopy techniques. Experimentally, the water permeation and absorption tests evidence the significant influence of the substrate on the rapid water permeation property of GNPs-coating. The water transport rates of the GNPs coatings correspond to the wettability and the free surface energy of their substrates where the most hydrophilic substrate induces the highest water transport rate. In addition, we conduct molecular dynamics (MD) simulations to investigate the transport rate of water molecules through multilayer GNPs adjacent to different substrate materials. The MD simulations results agree well with the experimental results inferring the strong influence of the substrate materials on the fast water transport of GNPs. Therefore, selection of substrate has to be taken into consideration when the GNPs-coating is placed into applications.
This study, for the first time, focused on the fabrication of nonporous polyurea thin films (~200 microns) using the electrospinning method as a novel approach for coating applications. Multi-walled carbon nanotubes (MWCNTs) and hydrophilic-fumed nanosilica (HFNS) were added separately into electrospun polyurea films as nano-reinforcing fillers for the enhancement of properties. Neat polyurea films demonstrated a tensile strength of 14 MPa with an elongation of 360%. At a loading of 0.2% of MWCNTs, the highest tensile strength of 21 MPa and elongation of 402% were obtained, while the water contact angle remained almost unchanged (89°). Surface morphology analysis indicated that the production of polyurea fibers during electrospinning bonded together upon curing, leading to a nonporous film. Neat polyurea exhibited high thermal resistance with a degradation temperature of 380 °C. Upon reinforcement with 0.2% of MWCNTs and 0.4% of HFNS, it increased by ~7 °C. The storage modulus increased by 42 MPa with the addition of 0.2% of MWCNTs, implying a superior viscoelasticity of polyurea nanocomposite films. The results were benchmarked with anti-corrosive polymer coatings from the literature, revealing that the production of nonporous polyurea coatings with robust strength, elasticity, and thermal properties was achieved. Electrospun polyurea coatings are promising candidates as flexible anti-corrosive coatings for heat exchanges and electrical wires.