METHODS: Different methods including flow cytometry, comet assay and reverse transcription-polymerase chain reaction (RT-PCR) were used to show the effects of juice exposure on the level of DNA damage and the reduction of cancerous cells. MTT assay is a colorimetric method applied to measure the toxic effects of juice on cells.
RESULTS: The Centella asiatica juice was not toxic to normal cells. It showed cytotoxic effects on tumor cells in a dose dependent manner. Apoptosis in cells was started after being exposed for 72 hr of dose dependent. It was found that the higher percentage of apoptotic cell death and DNA damage was at the concentration above 0.1%. In addition, the juice exposure caused the reduction of c-myc gene expression and the enhancement of c-fos and c-erbB2 gene expressions in tumor cells.
CONCLUSIONS: It was concluded that the Centella asiatica juice reduced liver tumor cells. Thus, it has the potential to be used as a chemopreventive agent to prevent and treat liver cancer.
OBJECTIVE: This study aimed to evaluate the anticancer effects of Strobilanthes crispus juice on hepatocellular carcinoma cells.
MATERIALS AND METHODS: MTT assays, flow cytometry, comet assays and the reverse transcription- polymerase chain reaction (RT-PCR) were used to determine the effects of juice on DNA damage and cancer cell numbers.
RESULTS: This juice induced apoptosis after exposure of the HepG2 cell line for 72 h. High percentages of apoptotic cell death and DNA damage were seen at the juice concentrations above 0.1%. It was found that the juice was not toxic for normal cells. In addition, juice exposure increased the expression level of c-myc gene and reduced the expression level of c-fos and c-erbB2 genes in HepG2 cells. The cytotoxic effects of juice on abnormal cells were in dose dependent.
CONCLUSIONS: It was concluded that the Strobilanthes crispus juice may have chemopreventive effects on hepatocellular carcinoma cells.
METHODS: The phytochemical fingerprint of C. nutans ethanolic leaf extract was evaluated by LC-MS/MS analysis. We investigated the effects of cisplatin (0-15.23 μg/mL), C. nutans (0-50 μg/mL), and a combination of cisplatin (3.05 μg/mL) and C. nutans (0-50 μg/mL), on cell viability, proliferation, apoptosis, invasion, mRNA expression in cancer stem cells (CD49f, KLF4), and differentiation markers (TUBA1A, KRT18) in TNBC cells. In addition, we also studied the interaction between cisplatin and C. nutans.
RESULTS: Derivatives of fatty acids, carboxylic acid ester, and glycosides, were identified as the major bioactive compounds with potential anticancer properties in C. nutans leaf extract. Reductions in cell viability (0-78%) and proliferation (2-77%), as well as a synergistic anticancer effect, were identified in TNBC cells when treated with a combination of cisplatin and C. nutans. Furthermore, apoptotic induction via increased caspase-3/7 activity (MDA-MB-231: 2.73-fold; MDA-MB-468: 3.53-fold), and a reduction in cell invasion capacity to 36%, were detected in TNBC cells when compared to single cisplatin and C. nutans treatments. At the mRNA level, cisplatin and C. nutans differentially regulated specific genes that are responsible for proliferation and differentiation.
CONCLUSION: Our findings demonstrate that the combination of cisplatin and C. nutans represents a potential treatment for TNBC.