Displaying all 11 publications

Abstract:
Sort:
  1. Purwanti IF, Kurniawan SB, Ismail N', Imron MF, Abdullah SRS
    J Environ Manage, 2019 Nov 01;249:109412.
    PMID: 31445374 DOI: 10.1016/j.jenvman.2019.109412
    This paper elucidates the capability of isolated indigenous bacteria to remove aluminium from wastewater and soil. Two indigenous species of Brochothrix thermosphacta and Vibrio alginolyticus were isolated from an aluminium-contaminated site. These two species were used to treat aluminium-containing wastewater and contaminated soil using the bioaugmentation method. B. thermosphacta showed the highest aluminium removal of 57.87 ± 0.45% while V. alginolyticus can remove aluminium up to 59.72 ± 0.33% from wastewater. For aluminium-contaminated soil, B. thermosphacta and V. alginolyticus, showed a highest removal of only 4.58 ± 0.44% and 5.48 ± 0.58%, respectively. The bioaugmentation method is more suitable to be used to treat aluminium in wastewater compared to contaminated soil. The produced biomass separation after wastewater treatment was so much easier and applicable, compared to the produced biomass handling from contaminated soil treatment. A 48.55 ± 2.45% and 40.12 ± 4.55% of aluminium can be recovered from B. thermosphacta and V. alginolyticus biomass, respectively, with 100 mg/L initial aluminium concentration in wastewater.
  2. Almaamary EAS, Abdullah SRS, Ismail N', Idris M, Kurniawan SB, Imron MF
    J Environ Manage, 2022 Apr 01;307:114534.
    PMID: 35065382 DOI: 10.1016/j.jenvman.2022.114534
    Dye is one of the pollutants found in water bodies because of the increased growth of the textile industry. In this study, Scirpus grossus was planted inside a constructed wetland to treat mixed dye (methylene blue and methyl orange)-containing wastewater under batch and continuous modes. The plants were exposed to various concentrations (0, 50, 75, and 100 mg/L) of mixed dye for 72 days (with hydraulic retention time of 7 days for the continuous system). Biological oxygen demand, chemical oxygen demand, total organic carbon, pH, temperature, ionic content, and plant growth parameters were measured. Results showed that S. grossus can withstand all the tested dye concentrations until the end of the treatment period. Color removal efficiencies of 86, 84, and 75% were obtained in batch mode, whereas 90%, 85%, and 79% were obtained in continuous mode for 50, 75, and 100 mg/L dye concentrations, respectively. Fourier-transform infrared analysis confirmed the transformation of dye compounds after treatment and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that most of the intermediate compounds were not absorbed into plants but adsorbed onto the surface of the root structure.
  3. Purwanti IF, Obenu A, Tangahu BV, Kurniawan SB, Imron MF, Abdullah SRS
    Heliyon, 2020 Sep;6(9):e05004.
    PMID: 33005804 DOI: 10.1016/j.heliyon.2020.e05004
    This research analyses the performance of bacteria-assisted phytoremediation of aluminium (Al)-contaminated soil using native Indonesian plants namely, Scirpus grossus and Thypa angustifolia. A range finding test (RFT) was carried out for 14 days to obtain the tolerable Al concentration for both plants. A total of 2% and 5% (v/v) of Vibrio alginolyticus were bioaugmented during the 28-day phytoremediation test to enhance the overall Al removal. Result of the RFT showed that both plants can tolerate up to 500 mg/kg Al concentration. The addition of V. alginolyticus to the reactors resulted in a significant increment of Al removal from the contaminated soil (p < 0.05). Such addition of V. alginolyticus increased the Al removal by up to 14.0% compared with that without-bacteria addition. The highest Al removal was obtained for S. grossus with 5% V. alginolyticus with an efficiency of 35.1% from 500 mg/kg initial concertation. T. angustifolia with 500 mg/kg initial concentration showed the highest removal of 26.2% by the addition of 5% V. alginolyticus. The increase of Al removal by the bioaugmentation of V. alginolyticus was due to the interaction in the plant's rhizosphere. Exudates of both plants provided a good environment for bacteria to live in the root area. Meanwhile, the bacteria increased the bioavailability of Al to be further extracted by plants. Certain mechanisms, such as rhizostabilisation, phytostimulation and phytoextraction, were considered to be the main processes that occurred during the treatment. S. grossus and T. angustifolia displayed promising ability to act as Al hyperaccumulators with bioaccumulation factor values up to 5.308 and 3.068, respectively. Development of the design of the ex-situ soil phytoremediation reactors is suggested as a future research direction because it can significantly enhance the current obtained finding.
  4. Titah HS, Purwanti IF, Tangahu BV, Kurniawan SB, Imron MF, Abdullah SRS, et al.
    J Environ Manage, 2019 May 15;238:194-200.
    PMID: 30851558 DOI: 10.1016/j.jenvman.2019.03.011
    The emergence of the aluminium recycling industry has led to an increase in aluminium-containing wastewater discharge to the environment. Biological treatment of metal is one of the solutions that can be provided as green technology. Screening tests showed that Brochothrix thermosphacta and Vibrio alginolyticus have the potential to remove aluminium from wastewater. Brochothrix thermosphacta removed up to 49.60%, while Vibrio alginolyticus was capable of removing up to 59.72% of 100 mg/L aluminium in acidic conditions. The removal of aluminium by V. alginolyticus was well fitted with pseudo-first-order kinetics (k1 = 0.01796/min), while B. thermosphacta showed pseudo-second-order kinetics (k2 = 0.125612 mg substrate/g adsorbent. hr) in the process of aluminium removal. V. alginolyticus had a higher rate constant under acidic conditions, while B. thermosphacta had a higher rate constant under neutral pH conditions.
  5. Kadir AA, Abdullah SRS, Othman BA, Hasan HA, Othman AR, Imron MF, et al.
    Chemosphere, 2020 Nov;259:127468.
    PMID: 32603966 DOI: 10.1016/j.chemosphere.2020.127468
    In this study, two native duckweeds (Lemna minor and Azolla pinnata) were cultivated in Palm Oil Mill Effluent (POME) to extract nutrients from the effluent. Five grams of A. pinnata and 2 g of L. minor were transferred to 2 L POME (Initial concentrations: 198 mg/L COD, 4.3 mg/L nitrates, pH 9.53, 4 mg/L phosphate, 2.98 mg/L ammonia) with four different dilutions (2.5%, 5%, 10%, 15%) under greenhouse conditions. Samples of POME were taken every two days up to 10 days. Growth parameter, phosphate, ammonia, nitrates, pH, and COD were monitored within 10 days to select the most suitable growth medium for both plants. Results showed that 2.5% POME dilution had positive effect on L. minor growth and A. pinnata (wet weight increased by 8.7 g and 9.8 g, respectively), with all plants able to survive until the final day of exposure. The highest removal of ammonia was accomplished in 5% POME dilution by A. pinnata (98%) and L. minor (95.5%). The maximum phosphate removal was obtained in 10% POME dilution with 93.3% removal by A. pinnata and 86.7% by L. minor. Significant COD removal in 15% POME was obtained by L. minor (78%) and A. pinnata (66%). Both plants responded positively to the phytoremediation process, especially for A. pinnata which showed significant decreases in all parameters. The nutrient extraction by both plants from POME showed a positive effect on growth parameter, which has further promising potential to be used as animal feedstock.
  6. Kurniawan SB, Ahmad A, Said NSM, Imron MF, Abdullah SRS, Othman AR, et al.
    Sci Total Environ, 2021 Oct 10;790:148219.
    PMID: 34380263 DOI: 10.1016/j.scitotenv.2021.148219
    Macrophytes have been widely used as agents in wastewater treatment. The involvement of plants in wastewater treatment cannot be separated from wetland utilization. As one of the green technologies in wastewater treatment plants, wetland exhibits a great performance, especially in removing nutrients from wastewater before the final discharge. It involves the use of plants and consequently produces plant biomasses as treatment byproducts. The produced plant biomasses can be utilized or converted into several valuable compounds, but related information is still limited and scattered. This review summarizes wastewater's nutrient content (macro and micronutrient) that can support plant growth and the performance of constructed wetland (CW) in performing nutrient uptake by using macrophytes as treatment agents. This paper further discusses the potential of the utilization of the produced plant biomasses as bioenergy production materials, including bioethanol, biohydrogen, biogas, and biodiesel. This paper also highlights the conversion of plant biomasses into animal feed, biochar, adsorbent, and fertilizer, which may support clean production and circular economy efforts. The presented review aims to emphasize and explore the utilization of plant biomasses and their conversion into valuable products, which may solve problems related to plant biomass handling during the adoption of CW in wastewater treatment plants.
  7. Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Latif MT, et al.
    Heliyon, 2023 Nov;9(11):e21737.
    PMID: 38027659 DOI: 10.1016/j.heliyon.2023.e21737
    Phytoremediation is one of the green technologies that is friendly to nature, utilizes fewer chemicals, and exhibits good performance. In this study, phytoremediation was used to treat diesel-contaminated sand using a local aquatic plant species, Scirpus mucronatus, by analyzing the amount of total petroleum hydrocarbons (TPHs). Optimization of diesel removal was performed according to Response Surface Methodology (RSM) using Box-Behnken Design (BBD) under pilot-scale conditions. The quadratic model showed the best fit to describe the obtained data. Actual vs. predicted values from BBD showed a total of 9.1 % error for the concentration of TPH in sand and 0 % error for the concentration of TPH in plants. Maximum TPH removal of 42.3 ± 2.1 % was obtained under optimized conditions at a diesel initial concentration of 50 mg/kg, an aeration rate of 0.48 L/min, and a retention time of 72 days. The addition of two species of rhizobacteria (Bacillus subtilis and Bacillus licheniformis) at optimum conditions increased the TPH removal to 51.9 ± 2.6 %. The obtained model and optimum condition can be adopted to treat diesel-contaminated sand within the same TPH range (50-3000 mg/kg) in sand.
  8. Imron MF, Hestianingsi WOA, Putranto TWC, Citrasari N, Abdullah SRS, Hasan HA, et al.
    Chemosphere, 2024 Apr;353:141595.
    PMID: 38438021 DOI: 10.1016/j.chemosphere.2024.141595
    Increasing aquaculture cultivation produces large quantities of wastewater. If not handled properly, it can have negative impacts on the environment. Constructed wetlands (CWs) are one of the phytoremediation methods that can be applied to treat aquaculture effluent. This research was aimed at determining the performance of Cyperus rotundus in removing COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate from the batch CW system. Treatment was carried out for 30 days with variations in the number of plants (10, 15, and 20) and variations in media height (10, 12, and 14 cm). The result showed that aquaculture effluent contains high levels of organic compounds and nutrients, and C. rotundus can grow and thrive in 100% of aquaculture effluent. Besides that, the use of C. rotundus in CWs with the effect of numbers of plants and media height showed performance of COD, BOD, TSS, turbidity, ammonia, nitrate, nitrite, and phosphate with 70, 79, 90, 96, 64, 82, 92, and 48% of removal efficacy, respectively. There was no negative impact observed on C. rotundus growth after exposure to aquaculture effluent, as indicated by the increase in wet weight, dry weight, and growth rate when compared to the control. Thus, adding aquaculture effluent to CWs planted with C. rotundus supports the growth and development of plants while also performing phytoremediation.
  9. Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail N', Hasan HA, et al.
    Int J Environ Res Public Health, 2020 Dec 12;17(24).
    PMID: 33322826 DOI: 10.3390/ijerph17249312
    The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.
  10. Lun YE, Abdullah SRS, Hasan HA, Othman AR, Kurniawan SB, Imron MF, et al.
    J Environ Manage, 2022 Mar 15;311:114832.
    PMID: 35303596 DOI: 10.1016/j.jenvman.2022.114832
    Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.
  11. Kurniawan SB, Imron MF, Chik CENCE, Owodunni AA, Ahmad A, Alnawajha MM, et al.
    Sci Total Environ, 2022 Feb 01;806(Pt 4):150902.
    PMID: 34653447 DOI: 10.1016/j.scitotenv.2021.150902
    Biocoagulants and bioflocculants are alternative items that can be used to substitute the utilization of common-chemical coagulants and flocculants. Biocoagulants/bioflocculants can be extracted from animals, microorganisms, and plants. Moreover, biocoagulants/bioflocculants have specific characteristics that contribute to the coagulation and flocculation processes. The active compounds inside biocoagulants/bioflocculants vary and correspond to the specific working mechanisms, including charge neutralization, sweep coagulation, adsorption, bridging, and patch flocculation. This review paper summarizes the characteristics of biocoagulants/bioflocculants from different sources and its performance in treating various pollutants. Furthermore, this paper discusses the most contributing compounds and functional groups of biocoagulants/bioflocculants that can be related to their working mechanisms. Several functional groups and compounds in biocoagulants/bioflocculants are highlighted in this review article, as well as the correlation between the highlighted groups/compounds to the aforementioned coagulation-flocculation mechanisms. In addition, current knowledge gaps in the study of biocoagulants/bioflocculants and future approaches that may serve as research directions are also emphasized. This review article is expected to shed information on the characteristics of biocoagulants/bioflocculants, which may then become a focus in the optimization to obtain higher performance in future application of coagulation-flocculation processes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links