Displaying all 8 publications

Abstract:
Sort:
  1. Nagentrau M, Mohd Tobi AL, Jamian S, Otsuka Y, Hussin R
    J Mech Behav Biomed Mater, 2021 10;122:104657.
    PMID: 34246851 DOI: 10.1016/j.jmbbm.2021.104657
    Present research aims to develop a finite element computational model to examine delamination-fretting wear behaviour that can suitably mimic actual loading conditions at HAp-Ti-6Al-4V interface of uncemented hip implant femoral stem component. A simple finite element contact configuration model based on fretting fatigue experimental arrangement subjected to different mechanical and tribological properties consist of contact pad (bone), HAp coating and Ti-6Al-4V substrate are developed using adaptive wear modelling approach adopting modified Archard wear equation to be examined under static simulation. The developed finite element model is validated and verified with reported literatures. The findings revealed that significant delamination-fretting wear is recorded at contact edge (leading edge) as a result of substantial contact pressure and contact slip driven by stress singularity effect. The delamination-fretting wear behaviour is promoted under higher delamination length, lower normal loading with higher fatigue loading, increased porous (cancellous) and cortical bone elastic modulus with higher cycle number due to significant relative slip amplitude as the result of reduced interface rigidity. Tensile-compressive condition (R=-1) experiences most significant delamination-fretting wear behaviour (8 times higher) compared to stress ratio R=0.1 and R=10.
  2. Jamian S, Norhisham A, Ghazali A, Zakaria A, Azhar B
    Insect Sci, 2017 Apr;24(2):285-294.
    PMID: 26712127 DOI: 10.1111/1744-7917.12309
    Integrated pest management (IPM) is widely practiced in commercial oil palm agriculture. This management system is intended to minimize the number of attacks by pest insects such as bagworms on crops, as well as curb economic loss with less dependency on chemical pesticides. One practice in IPM is the use of biological control agents such as predatory insects. In this study, we assessed the response of predatory natural enemies to pest outbreak and water stress, and document the habitat associations of potential pest predators. The abundances of 2 predatory insect species, namely Sycanus dichotomus and Cosmolestes picticeps (Hemiptera: Reduviidae), were compared bagworm outbreak sites and nonoutbreak sites within oil palm plantations. We also examined habitat characteristics that influence the abundances of both predatory species. We found that the abundance of C. picticeps was significantly higher in bagworm outbreak sites than in nonoutbreak sites. There were no significant differences in the abundance of S. dichotomus among outbreak and non-outbreak sites. Both species responded negatively to water stress in oil palm plantations. Concerning the relationship between predatory insect abundance and in situ habitat quality characteristics, our models explained 46.36% of variation for C. picticeps and 23.17% of variation for S. dichotomus. Both species of predatory insects thrived from the planting of multiple beneficial plants in oil palm plantations. The results suggest that C. picticeps can be used as a biological agent to control bagworm populations in oil palm plantations, but S. dichotomus has no or little potential for such ecosystem service.
  3. Sani I, Jamian S, Saad N, Abdullah S, Mohd Hata E, Jalinas J, et al.
    PLoS One, 2023;18(5):e0285666.
    PMID: 37216342 DOI: 10.1371/journal.pone.0285666
    Entomopathogenic fungi (EPF) are natural enemies which affect insect population and have long been recognized as biological control agents against many insect pests. Some isolates have also been established as endophytes, benefiting their host plants without causing any symptoms or negative effects. Here we demonstrated two entomopathogenic fungal species, Isariajavanica (Frieder. & Bally) Samson & Hywel-jone 2005 and Purpureocillium lilacinum (Thom) Luangsa-ard, Hou-braken, Hywel-Jones & Samson (2011) as endophytes in tomato plants by using the seed inoculation method and examined their effect on plant growth, B. tabaci mortality, and adult emergence. Our study indicated that tomato seeds treated with a fungal suspension of I. javanica and P. lilacinum enabled their recovery from plant tissues (root, stem and leaf) up to 60 days after inoculation (DAI). Both endophytic isolates also caused significant mortality of adult B. tabaci on seedlings inoculated with, I. javanica (51.92±4.78%), and P. lilacinum (45.32±0.20%) compared to the control treatment (19.29±2.35). Adult emergence rates were significantly high in the control treatments (57.50±2.66%) compared to I. javanica (15.00±1.47%) and P. lilacinum (28.75±4.78%) treatments. This study provides evidence that endophytic isolates of I. javanica and P. lilacinum have a biocontrol potentials for used against whiteflies and could also explored as plant growth promoters.
  4. Ismail SI, Mohmad Zaiwawi NL, Abdullah S, Jamian S, Saad N
    Plant Dis, 2021 Apr 15.
    PMID: 33858187 DOI: 10.1094/PDIS-12-20-2614-PDN
    Plumeria alba L. is a flowering plant in the family Apocynaceae and widely cultivated in Malaysia as a cosmopolitan ornamental plant. In January 2020, anthracnose lesions were observed on leaves of Plumeria alba planted in Agricultural Farm, Universiti Putra Malaysia, in Selangor state, Malaysia. The disease mainly affected the leaves with symptoms occurring with approximately a 60% disease incidence. Ten symptomatic leaves were sampled from 3 different trees in the farm. Symptoms initiated as small circular necrotic spots that rapidly enlarged into black lesions with pale brown borders. Diseased tissues (5×5 mm) were surface-sterilized with 70% ethanol for 1 min, rinsed three times with sterile distilled water, dried on sterile filter papers, plated on PDA and, incubated at 25 °C with a 12-h photoperiod. A total of seven single-spore isolates with similar colony morphologies were obtained from tissue samples. After 7 days, the colonies raised the entire margin and showed white-to-gray aerial mycelium, orange conidial masses in the center and appeared dark brown at the center of the reverse view. The conidia were 1-celled, hyaline, smooth-walled, cylindrical with narrowing at the center, averaged (13-15 μm × 3 - 4 μm) (n=40) in size. Morphological characteristics of the isolates were similar to those detailed in taxonomic description of Colletotrichum sp. (Prihastuti et al. 2009). For molecular identification, genomic DNA of two representative isolates, PL3 and PL4 was extracted from fresh mycelium using DNeasy Plant Mini Kit (Qiagen, USA). The internal transcribed spacer (ITS) region, actin (ACT) and calmodulin (CAL) genes were amplified using ITS5/ITS4 (White et al. 1990), ACT-512F/783R (Carbone and Kohn 1999) and CL1C/CL2C primer sets (Weir et al. 2012). A BLAST nucleotide search of GenBank using ITS sequences showed 100% identity to Colletotrichum siamense ex-type culture ICMP 18578 (GenBank accession no. JX010171). ACT and CAL sequences showed 100% identity with C. siamense ex-type isolate BPD-I2 (GenBank accession no. FJ907423 and FJ917505). The sequences were deposited in GenBank (ITS: accession nos. MW335128, MT912574), ACT: accession nos. MW341257, MW341256, CAL: accession nos. MW341255 and MT919260). Based on these morphological and molecular characteristics, the fungus was identified as C. siamense. Pathogenicity of PL3 and PL4 isolates was verified using four healthy detached leaves of Plumeria alba. The leaves were surface-sterilized using 70% ethanol and rinsed twice with sterile water before inoculation. The leaves (three inoculation sites/leaf) were wounded by puncturing with a sterile needle through the leaf cuticle and inoculated in the wound site with 10-μl of conidial suspension (1×106 conidia/ml) from 7-days-old culture on PDA. Four leaves were used as a control and were inoculated only with 10-μl of sterile distilled water. Inoculated leaves were kept in humid chambers for 2 weeks at 25 °C with 98% relative humidity on a 12-h fluorescent light/dark period. The experiment was repeated three times. Anthracnose symptoms were observed on all inoculated leaves after 3 days, whereas controls showed no symptoms. Fungal isolates from the diseased leaves showed the same morphological characteristics as isolates PL3 and PL4, confirming Koch's postulates. C. siamense has been reported causing anthracnose on rose (Rosa chinensis) in China (Feng et al. 2019), Coffea arabica in Thailand (Prihastuti et al. 2009) and mango leaf anthracnose in Vietnam (Li et al. 2020). To our knowledge, this is the first report of Colletrotrichum siamense causing leaf anthracnose on Plumeria alba in Malaysia. Accurate identification of this pathogen provides a foundation in controlling anthracnose disease on Plumeria alba.
  5. Sairi AMM, Ismail SI, Sukor A, Rashid NMN, Saad N, Jamian S, et al.
    PMID: 33376497 DOI: 10.1155/2020/7415672
    Polypores are mushrooms which are rich in bioactivities and for generations, they have been widely used as herbal remedies. Despite their significant importance in treatments of various health issues, only a few local species have been reported for their pharmacological potentials. The present study was carried out to establish cytotoxicity potentials of Donkioporiella mellea, a local polypore species collected from forested areas in Malaysia at cellular levels on normal human lung (MRC5) and human lung carcinoma (A549) cell lines. Survival and inhibition rates were analyzed by 3-(4, 5)-dimethylthiahiazo (-z-y-l)-2,5-diphenyltetrazoliumbromide (MTT) while monitoring changes on cellular shapes by inverted phase contrast microscopy. Survival rates of MRC5 cells were observed to be significantly higher than A549 after treatments with various concentrations of polypore extracts. MRC5 cells showed excellence in survival performance when treated with hot and cold aqueous extracts. Cold aqueous extract showed higher cytotoxicity activities compared to hot aqueous extract (p < 0.0001) with inhibitory concentration (IC50) values of 414.29 μg/ml and >1000 μg/ml, respectively. Treatments with tamoxifen as a control exhibited necrotic features in both cell lines. The results suggest that D. mellea possesses pharmacological potentials that can be utilized for human consumption as a new bioresource alternative, thus encouraging research advancement in mycological and nutraceutical studies.
  6. Johari MIH, Zulperi D, Saad N, Ismail SI, Jamian S, Abdullah S, et al.
    Plant Dis, 2023 Nov 08.
    PMID: 37938907 DOI: 10.1094/PDIS-07-23-1278-PDN
    Ceylon ironwood (Mesua ferrea Linn.) or Penaga lilin is one of Asia's most popular tropical herbal plants, including Malaysia (Sharma et al., 2017). The trees are cultivated for their aesthetic value and pharmacological properties, especially as traditional remedies for asthma, dermatopathy, inflammation, and rheumatic conditions (Adib et al., 2019). In August 2022, a disease survey was conducted on Ceylon ironwood trees ranging from 5 to 12 years old in Botanical Park, Putrajaya, Malaysia, with 80% exhibiting shoot dieback disease of the 15 trees exhibiting shoot dieback disease. Symptoms include irregular, water-soaked with brown lesions on young leaves and shoots, where the small lesion coalesced and formed broad necrotic regions, subsequently causing dieback and gradual defoliation. Three infected shoots were collected from each tree, excised into small pieces (10 to 20 mm), immersed with 75% ethanol for 3 min, washed with 2% NaOCl solution for 1 min, and rinsed twice for 1 min in sterilized distilled water. A 10 µl aliquot of the sample suspension was streaked onto nutrient agar (NA) and incubated for 24 h to 48 h at 35 °C. A total of 15 isolates with similar morphology were obtained, and each isolate was re-streaked three times to obtain pure colonies that were round, smooth, with irregular edges, and produced yellow pigment in culture. All isolates were Gram-negative, negative for indole production, and utilized glucose, maltose, trehalose, sucrose, D-lactose, and pectin. Three representative isolates (C001, C002, and C003) with similar morphology were selected for further characterization. The total genomic DNA of all isolates was extracted from overnight cultures using Geneaid™ DNA Isolation Kit (Geneaid Biotech Ltd., Taiwan). PCR amplification of 16S rDNA (Zhou et al., 2015) and species-specific infB (Brady et al., 2008) genes was performed, and each of the ~1500 bp and ~900 bp amplicons were sequenced. BLASTn and phylogenetic analyses revealed all isolates were 100% identical to Pantoea anthophila (P. anthophila) LGM 2558 strains (Accession Nos. NR_116749 and NR_116113) for the 16S rDNA gene. They were 99% identical to P. anthophila CL1 strain (Accession Number CP110473) for infB gene. These sequences were later deposited in the GenBank (Accession Nos. OQ772233, OQ772234, and OQ772235 for 16S rDNA gene, and OQ803527, OQ803528, and OQ803529 for infB gene). For the pathogenicity test, healthy Ceylon ironwood seedlings' shoots were inoculated with 10 mL of each isolate suspension (1 x 108 CFU/ml) by spraying the inoculum on the young shoots using a sterilized spray bottle. Control seedlings were inoculated with sterile water. The inoculated shoots were covered with a sealed plastic bag to maintain the moisture and were kept in the greenhouse with temperatures ranging from 26 to 35 °C. The experiments were repeated twice, with three replicates for each treatment. Inoculated shoots showed dieback symptoms like natural infection, including irregular, water-soaked, and brown lesions on leaves and young shoots at 10 days post-inoculation. Control seedlings remained asymptomatic. The pathogen was re-isolated and identified via sequencing of the 16S rDNA and infB genes, thus fulfilling Koch's postulates. Previously, P. anthophila has been reported to cause soft rot in wampee plants in China (Zhou et al., 2015) and leaf blight of cotton in Pakistan (Tufail et al., 2020). To our knowledge, this is the first report of P. anthophila causing shoot dieback disease of Ceylon ironwood trees in Malaysia. Plant disease management strategies need to be established to reduce losses due to P. anthophila infection since the pathogen could limit Ceylon ironwood tree production in Malaysia.
  7. Swaray S, Y Rafii M, Din Amiruddin M, Firdaus Ismail M, Jamian S, Jalloh M, et al.
    Insects, 2021 Mar 04;12(3).
    PMID: 33806613 DOI: 10.3390/insects12030221
    This study was conducted to assess the Elaeidobius kamerunicus (EK) population density among the biparental dura × pisifera hybrids' palms on deep peat-soil. Twenty-four hybrids derived from 10 genetic sources were used. Variance analysis showed that the EK population density varies between different oil palm hybrids, with a more noticeable variation of a low population mean in the male weevil across the hybrids. The highest weevil population mean/spikelet was attained on the third day of anthesis. The maximum monthly population of EK/spikelet (12.81 ± 0.23) and population density of EK (1846.49 ± 60.69) were recorded in January. Accordingly, 41.67% of the hybrids recorded an EK population density greater than the trial means of 973.68 weevils. Hybrid ECPHP550 had the highest mean of EK/spikelet (10.25 ± 0.11) and the highest population density of EK/palm (1241.39 ± 73.74). The parental mean population was 963.24 weevils and parent Deli-Banting × AVROS recorded the highest EK population density (1173.01). The overall results showed a notable disparity in the EK population among the biparental hybrids. Parental Deli-Banting × AVROS and hybrid ECPHP550 could be more useful to optimize the weevil population for pollination improvements in palm plantations. However, we suggest that volatile production should be included as a desirable trait in oil palm selective breeding.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links