PARTICIPANTS AND METHODS: We conducted online in-depth interviews among seven house officers using an interview guide developed based on a literature review. The transcripts were analyzed. Major themes were identified. A 33-item questionnaire was developed, and the main and sub-themes were identified as motivators for specialist career choice. An online survey was done among 185 house officers. Content validation of motivators for specialist choice was done using exploratory factor analysis. First, second and third choices for a specialist career were identified. Multinomial logistic regression analyses were done to determine the socio-demographic factors and motivators associated with the first choice.
RESULTS: HOs perceived that specialist training opportunities provide a wide range of clinical competencies through well-structured, comprehensive training programs under existing specialist training pathways. Main challenges were limited local specialist training opportunities and hurdles for 'on-contract' HO to pursue specialist training. Motivators for first-choice specialty were related to 'work schedule', 'patient care characteristics', 'specialty characteristics', 'personal factors', 'past work experience', 'training factors', and 'career prospects.' House officers' first choices were specialties related to medicine (40.5%), surgery (31.5%), primary care (14.6%), and acute care (13.5%). On multivariate analysis, "younger age", "health professional in the family", "work schedule and personal factors", "career prospects" and "specialty characteristics" were associated with the first choice.
CONCLUSIONS: Medical and surgical disciplines were the most preferred disciplines and their motivators varied by individual discipline. Overall work experiences and career prospects were the most important motivators for the first-choice specialty. The information about motivational factors is helpful to develop policies to encourage more doctors to choose specialties with a shortage of doctors and to provide career specialty guidance.
STUDY DESIGN: An observational study was conducted among 54 patients who reported to the outpatient department of Saveetha Dental College and Hospitals. The patients were divided into three groups: Group I healthy individuals (n = 18), Group II: case group (leukoplakia, OSMF, and leukoplakia and OSMF) (n = 18), and Group III: OSCC (n = 18). Real-time polymerase chain reaction analysis was carried out to assess the expression profiles of miRNA 21, miRNA 184, and miRNA 145. The statistical analysis was calculated using SPSS software version 23.
RESULTS: All three miRNAs showed a statistically significant difference in the one-way ANOVA test between the case group (leukoplakia, OSMF, and leukoplakia and OSMF), healthy group, and OSCC group (p
OBJECTIVE: To estimate mortality due to firearm injury deaths from 1990 to 2016 in 195 countries and territories.
DESIGN, SETTING, AND PARTICIPANTS: This study used deidentified aggregated data including 13 812 location-years of vital registration data to generate estimates of levels and rates of death by age-sex-year-location. The proportion of suicides in which a firearm was the lethal means was combined with an estimate of per capita gun ownership in a revised proxy measure used to evaluate the relationship between availability or access to firearms and firearm injury deaths.
EXPOSURES: Firearm ownership and access.
MAIN OUTCOMES AND MEASURES: Cause-specific deaths by age, sex, location, and year.
RESULTS: Worldwide, it was estimated that 251 000 (95% uncertainty interval [UI], 195 000-276 000) people died from firearm injuries in 2016, with 6 countries (Brazil, United States, Mexico, Colombia, Venezuela, and Guatemala) accounting for 50.5% (95% UI, 42.2%-54.8%) of those deaths. In 1990, there were an estimated 209 000 (95% UI, 172 000 to 235 000) deaths from firearm injuries. Globally, the majority of firearm injury deaths in 2016 were homicides (64.0% [95% UI, 54.2%-68.0%]; absolute value, 161 000 deaths [95% UI, 107 000-182 000]); additionally, 27% were firearm suicide deaths (67 500 [95% UI, 55 400-84 100]) and 9% were unintentional firearm deaths (23 000 [95% UI, 18 200-24 800]). From 1990 to 2016, there was no significant decrease in the estimated global age-standardized firearm homicide rate (-0.2% [95% UI, -0.8% to 0.2%]). Firearm suicide rates decreased globally at an annualized rate of 1.6% (95% UI, 1.1-2.0), but in 124 of 195 countries and territories included in this study, these levels were either constant or significant increases were estimated. There was an annualized decrease of 0.9% (95% UI, 0.5%-1.3%) in the global rate of age-standardized firearm deaths from 1990 to 2016. Aggregate firearm injury deaths in 2016 were highest among persons aged 20 to 24 years (for men, an estimated 34 700 deaths [95% UI, 24 900-39 700] and for women, an estimated 3580 deaths [95% UI, 2810-4210]). Estimates of the number of firearms by country were associated with higher rates of firearm suicide (P
METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.
RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.
CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).
FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).
INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.
OBJECTIVE: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning.
EVIDENCE REVIEW: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence.
FINDINGS: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs).
CONCLUSIONS AND RELEVANCE: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care.