Displaying all 9 publications

Abstract:
Sort:
  1. Haque N, Kasim NHA, Kassim NLA, Rahman MT
    Cell Prolif, 2017 Aug;50(4).
    PMID: 28682474 DOI: 10.1111/cpr.12354
    OBJECTIVES: Foetal bovine serum (FBS) is often the serum supplement of choice for in vitro human cell culture. This study compares the effect of FBS and autologous human serum (AuHS) supplement in human peripheral blood mononuclear cell (PBMC) culture to prepare secretome.

    MATERIALS AND METHODS: The PBMC (n = 7) were cultured either in RPMI-1640 containing L-glutamine and 50 units/ml Penicillin-Streptomycin (BM) or in BM with either AuHS or FBS. Viability, proliferation and differentiation of PBMC were evaluated. Paracrine factors present in the secretomes (n = 6) were analysed using ProcartaPlex Human Cytokine panel (17 plex). Ingenuity Pathway Analysis (IPA) was performed to predict activation or inhibition of biological functions related to tissue regeneration.

    RESULTS: The viability of PBMC that were cultured with FBS supplement was significantly reduced at 96 h compared to those at 0 and 24 h (P 

  2. Aung SW, Kasim NHA, Shamsuddin SAA, Ramasamy TS
    Stem Cell Rev Rep, 2020 08;16(4):809-810.
    PMID: 32681231 DOI: 10.1007/s12015-020-09968-7
    The original version of this article unfortunately contained a mistake.
  3. Bindal P, Gnanasegaran N, Bindal U, Haque N, Ramasamy TS, Chai WL, et al.
    Clin Oral Investig, 2019 Oct;23(10):3821-3831.
    PMID: 30687907 DOI: 10.1007/s00784-019-02811-5
    OBJECTIVE: In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells.

    MATERIALS AND METHODS: Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay.

    RESULTS: Viability of iDPSCs was significantly (p 

  4. Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL
    Cell Biol Int, 2018 Jul;42(7):832-840.
    PMID: 29363846 DOI: 10.1002/cbin.10938
    This study aimed to investigate the effect of inflammatory stimuli on dental pulp stem cells (DPSCs) by assessing their proliferation and expression of genes as well as proteins in lipopolysaccharide (LPS)-induced microenvironment (iDPSCs). DPSCs were first characterized for their mesenchymal properties prior to challenging them with a series of LPS concentrations from 12 to 72 h. Following to this, their proliferation and inflammatory based genes as well as protein expression were assessed. iDPSCs had demonstrated significant expression of mesenchymal markers. Upon exposure to LPS, the viability dropped distinctly with increasing concentration, as compared to control (P 
  5. Sarraf M, Razak BA, Nasiri-Tabrizi B, Dabbagh A, Kasim NHA, Basirun WJ, et al.
    J Mech Behav Biomed Mater, 2017 02;66:159-171.
    PMID: 27886563 DOI: 10.1016/j.jmbbm.2016.11.012
    Tantalum pentoxide nanotubes (Ta2O5NTs) can dramatically raise the biological functions of different kinds of cells, thus have promising applications in biomedical fields. In this study, Ta2O5NTs were prepared on biomedical grade Ti-6Al-4V alloy (Ti64) via physical vapor deposition (PVD) and a successive two-step anodization in H2SO4: HF (99:1)+5% EG electrolyte at a constant potential of 15V. To improve the adhesion of nanotubular array coating on Ti64, heat treatment was carried out at 450°C for 1h under atmospheric pressure with a heating/cooling rate of 1°Cmin-1. The surface topography and composition of the nanostructured coatings were examined by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS), to gather information about the corrosion behavior, wear resistance and bioactivity in simulated body fluids (SBF). From the nanoindentation experiments, the Young's modulus and hardness of the 5min anodized sample were ~ 135 and 6GPa, but increased to ~ 160 and 7.5GPa, respectively, after annealing at 450°C. It was shown that the corrosion resistance of Ti64 plates with nanotubular surface modification was higher than that of the bare substrate, where the 450°C annealed specimen revealed the highest corrosion protection efficiency (99%). Results from the SBF tests showed that a bone-like apatite layer was formed on nanotubular array coating, as early as the first day of immersion in simulated body fluid (SBF), indicating the importance of nanotubular configuration on the in-vitro bioactivity.
  6. Thekkeparambil Chandrabose S, Sriram S, Subramanian S, Cheng S, Ong WK, Rozen S, et al.
    Stem Cell Res Ther, 2018 03 20;9(1):68.
    PMID: 29559008 DOI: 10.1186/s13287-018-0796-2
    BACKGROUND: While a shift towards non-viral and animal component-free methods of generating induced pluripotent stem (iPS) cells is preferred for safer clinical applications, there is still a shortage of reliable cell sources and protocols for efficient reprogramming.

    METHODS: Here, we show a robust episomal and xeno-free reprogramming strategy for human iPS generation from dental pulp stem cells (DPSCs) which renders good efficiency (0.19%) over a short time frame (13-18 days).

    RESULTS: The robustness of DPSCs as starting cells for iPS induction is found due to their exceptional inherent stemness properties, developmental origin from neural crest cells, specification for tissue commitment, and differentiation capability. To investigate the epigenetic basis for the high reprogramming efficiency of DPSCs, we performed genome-wide DNA methylation analysis and found that the epigenetic signature of DPSCs associated with pluripotent, developmental, and ecto-mesenchymal genes is relatively close to that of iPS and embryonic stem (ES) cells. Among these genes, it is found that overexpression of PAX9 and knockdown of HERV-FRD improved the efficiencies of iPS generation.

    CONCLUSION: In conclusion, our study provides underlying epigenetic mechanisms that establish a robust platform for efficient generation of iPS cells from DPSCs, facilitating industrial and clinical use of iPS technology for therapeutic needs.

  7. Lim GS, Wey MC, Azami NH, Noor NSM, Lau MN, Haque N, et al.
    Curr Stem Cell Res Ther, 2021;16(5):577-588.
    PMID: 33198618 DOI: 10.2174/1574888X15999201116162256
    The concept of regenerative endodontics wherein one can replace damaged pulp structures and recuperate the functionality in erstwhile necrotic and infected root canal systems has been a cutting-edge technology. Though the notion started as early as the 1960s, even before the discovery of stem cells and regenerative medicine, it was in the 2000s that this procedure gained momentum. Ever since then, researchers continue to discover its essential benefit to immature teeth and its ability to overcome the caveats of endodontic therapy, which is commonly known as root canal treatment. Further, through this therapy, one can redevelop root even in immature teeth with necrotic pulps, which overall helps in maintaining skeletal and dental development. Past literature indicates that regenerative endodontic procedures seem to be successful, especially when compared with other conventional techniques such as Mineral Trioxide Aggregate apexification. Besides, many clinicians have begun to apply regenerative endodontic procedures to mature teeth in adult patients, with several clinical case reports that have shown complete resolution of signs and symptoms of pulp necrosis. Generally, the three most desirable outcomes anticipated by clinicians from this procedure include resolution of clinical signs and symptoms, root maturation and redevelopment of the neurogenesis process. Despite this, whether these objectives and true regeneration of the pulp/dentin complex are achieved is still a question mark. Following the discovery that regenerative endodontics indeed is a stem cell-based treatment, addressing the fundamental issue surrounding stem cells might assist in achieving all identified clinical outcomes while favoring tissue formation that closely resembles the pulp-dentin complex.
  8. Bindal P, Bindal U, Lin CW, Kasim NHA, Ramasamy TSAP, Dabbagh A, et al.
    Technol Health Care, 2017 Dec 04;25(6):1041-1051.
    PMID: 28800347 DOI: 10.3233/THC-170922
    Dental stem cells isolated for human dental pulp are an excellent source for regenerative medicine and dentistry. Simulation of clinical scenario is one of the crucial challenges for evaluation of the efficacy of DPSCs in various regenerative therapies. In this study we evaluated the viability of DPSCs after treatment with artificial bacterial lipopolysaccharides (LPS) as the main component responsible for inducing inflammatory response in majority of the inflammatory conditions in clinical scenario. Although a number of studies have previously treated stem cells with LPS from bacteria, however the accuracy level of the outcome was not established. Here we have analyzed the outcome using adaptive neuro-fuzzy inferences system (ANFIS) to predict the viability of human DPSCs after treatment with bacterial LPS.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links