Displaying all 9 publications

Abstract:
Sort:
  1. Ebrahimi Nigjeh S, Yusoff FM, Mohamed Alitheen NB, Rasoli M, Keong YS, Omar AR
    Biomed Res Int, 2013;2013:783690.
    PMID: 23509778 DOI: 10.1155/2013/783690
    Marine microalgae have been prominently featured in cancer research. Here, we examined cytotoxic effect and apoptosis mechanism of crude ethanol extracts of an indigenous microalga, Chaetoceros calcitrans (UPMAAHU10) on human breast cell lines. MCF-7 was more sensitive than MCF-10A with IC50 value of 3.00 ± 0.65, whilst the IC50 value of Tamoxifen against MCF-7 was 12.00 ± 0.52  μg/mL after 24 hour incubation. Based on Annexin V/Propidium iodide and cell cycle flow cytometry analysis, it was found that inhibition of cell growth by EEC on MCF-7 cells was through the induction of apoptosis without cell cycle arrest. The apoptotic cells at subG0/G1 phase in treated MCF-7 cells at 48 and 72 hours showed 34 and 16 folds increased compared to extract treated MCF-10A cells which showed only 6 and 7 folds increased at the same time points, respectively. Based on GeXP study, EEC induced apoptosis on MCF-7 cells via modulation of CDK2, MDM2, p21Cip1, Cyclin A2, Bax and Bcl-2. The EEC treated MCF-7 cells also showed an increase in Bax/Bcl-2 ratio that in turn activated the caspase-dependent pathways by activating caspase 7. Thus, marine microalga, Chaetoceros calcitrans may be considered a good candidate to be developed as a new anti-breast cancer drug.
  2. Alitheen NB, Oon CL, Keong YS, Chuan TK, Li HK, Yong HW
    Pak J Pharm Sci, 2011 Jul;24(3):243-50.
    PMID: 21715255
    Cytotoxicity, the possible selective activity upon HL60 as well as the anti-proliferation effect of local health supplement wheatgrass and mixture of fibers were investigated in vitro using various cancerous cell line and normal blood cell culture. The IC(50) of wheatgrass-treated HL60 (17.5 ± 1.1, 12.5 ± 0.3, and 16 ± 0.5 microgram/ml for 24, 48 and 72 h, respectively) and fibers-treated HL60 (86.0 ± 5.5, 35.0 ± 2.5, and 52.5 ± 4.5 microgram/ml for 24, 48 and 72 h, respectively) showed that both extracts possessed optimum effect after 48 hours of treatment. No significant cytotoxic effect was observed on other type of cells. For trypan blue dye exclusion method, wheatgrass reduced the number of viable cells by 13.5% (±1.5), 47.1% (±3.6), and 64.9% (±2.7) after 24, 48 and 72 h exposure, respectively. Mixture of fibers reduced the number of viable cells by 36.4% (±2.3), 57.1% (±3.1), and 89.0% (±3.4) after 24, 48 and 72 h exposure, respectively, indicated that necrosis is also an alternative to the apoptotic mechanism of cell death. Annexin-V/propidium iodide staining revealed that both extracts induced apoptosis where early apoptosis had been detected concurrently with the reduction of percentage of cell viability. Cell cycle analysis revealed that in HL60, the percentage of apoptosis increased with time (wheatgrass: 16.0% ± 2.4, 45.3% ± 3.4 and 39.6% ± 4.1; mixture of fibers: 14.6% ± 1.8, 45.4% ± 2.3 and 45.9% ± 1.2) after exposure for 24, 48 and 72 h, respectively at the concentration of 100 microgram/ml and showed optimum effect at 48 hours. Thus, these health products can be a potential alternative supplement for leukaemia patients.
  3. Keong YS, Alitheen NB, Mustafa S, Abdul Aziz S, Abdul Rahman M, Ali AM
    Pak J Pharm Sci, 2010 Jan;23(1):75-82.
    PMID: 20067871
    In this study, the immunomodulatory effects of zerumbone isolated from Zingiber zerumbet were investigated by evaluating the effects of this compound towards the lymphocytes proliferation (mice thymocytes, mice splenocytes and human human peripheral blood mononuclear cells, PBMC), cell cycle progression and cytokine (interleukin 2 and 12) induction. Lymphocyte proliferation assay showed that zerumbone was able to activate mice thymocytes, splenocytes and PBMC at dosage dependent pattern where the best concentration was 7.5 microg/ml. Flow cytometry analysis showed the highest population of PBMC entered into G2/M phase after treatment for 72 h with 7.5 microg/ml zerumbone. The production of human interleukin-2 and human interleukin-12 cytokines in culture supernatant from zerumbone activated lymphocytes was prominently upregulated at 24 hour and decreased from 48 h to 72 h. The above results indicate that zerumbone can be used as immunomodulatory agent which can react toward the immune cell cytokine production in dosage dependent pattern.
  4. Bakar AF, Alitheen NB, Keong YS, Hamid M, Ali SA, Ali AM
    Hybridoma (Larchmt), 2009 Jun;28(3):199-203.
    PMID: 19519247 DOI: 10.1089/hyb.2007.0531
    Hybridoma clone C3A8, which is a fusion product between splenic lymphocytes of Balb/c mice immunized with MCF7 breast carcinoma cells and SP2/0 myelomas, was produced and characterized. A stable clone that secreted IgM monoclonal antibody (MAb) with kappa light chain was obtained through limiting dilutions. Cell-ELISA screening, flow cytometry analysis, and immunofluorescence staining revealed that the MAb C3A8 had bound specifically and strongly to MCF7 and HT29 but cross reacted weakly or not on HeLa cell line. The MAb C3A8 reacted positively with paraffin-embedded tissues of human breast and colon cancers but there were no positive reactions on normal tissues. Western blot analysis showed the MAb recognized a 55 kDa protein, which was present in the extract of MCF7 and HT29 cell lines. Our results demonstrated that MAb C3A8 could be used for basic and clinical research of breast and colon cancers.
  5. Bande F, Arshad SS, Bejo MH, Omar AR, Moeini H, Khadkodaei S, et al.
    Microb Pathog, 2020 Dec;149:104560.
    PMID: 33068733 DOI: 10.1016/j.micpath.2020.104560
    Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.
  6. Ahmadipour F, Noordin MI, Mohan S, Arya A, Paydar M, Looi CY, et al.
    Drug Des Devel Ther, 2015;9:1193-208.
    PMID: 25759564 DOI: 10.2147/DDDT.S72127
    Inhibition of breast cancer stem cells has been shown to be an effective therapeutic strategy for cancer prevention. The aims of this work were to evaluate the efficacy of koenimbin, isolated from Murraya koenigii (L) Spreng, in the inhibition of MCF7 breast cancer cells and to target MCF7 breast cancer stem cells through apoptosis in vitro.
  7. Romli F, Abu N, Khorshid FA, Syed Najmuddin SUF, Keong YS, Mohamad NE, et al.
    Integr Cancer Ther, 2017 12;16(4):540-555.
    PMID: 27338742 DOI: 10.1177/1534735416656051
    Although it may sound unpleasant, camel urine has been consumed extensively for years in the Middle East as it is believed to be able to treat a wide range of diseases such as fever, cold, or even cancer. People usually take it by mixing small drops with camel milk or take it directly. The project aims to study the effects of camel urine in inhibiting the growth potential and metastatic ability of 4T1 cancer cell line in vitro and in vivo. Based on the MTT result, the cytotoxicity of camel urine against 4T1 cell was established, and it was dose-dependent. Additionally, the antimetastatic potential of camel urine was tested by running several assays such as scratch assay, migration and invasion assay, and mouse aortic ring assay with promising results in the ability of camel urine to inhibit metastatic process of the 4T1 cells. In order to fully establish camel urine's potential, an in vivo study was carried out by treating mice inoculated with 4T1 cells with 2 different doses of camel urine. By the end of the treatment period, the tumor in both treated groups had reduced in size as compared to the control group. Additional assays such as the TUNEL assay, immunophenotyping, cytokine level detection assay, clonogenic assay, and proteome profiler demonstrated the capability of camel urine to reduce and inhibit the metastatic potential of 4T1 cells in vivo. To sum up, further study of anticancer properties of camel urine is justified, as evidenced through the in vitro and in vivo studies carried out. Better results were obtained at higher concentration of camel urine used in vivo. Apart from that, this project has laid out the mechanisms employed by the substance to inhibit the growth and the metastatic process of the 4T1 cell.
  8. Zamberi NR, Abu N, Mohamed NE, Nordin N, Keong YS, Beh BK, et al.
    Integr Cancer Ther, 2016 Dec;15(4):NP53-NP66.
    PMID: 27230756
    BACKGROUND: Kefir is a unique cultured product that contains beneficial probiotics. Kefir culture from other parts of the world exhibits numerous beneficial qualities such as anti-inflammatory, immunomodulation, and anticancer effects. Nevertheless, kefir cultures from different parts of the world exert different effects because of variation in culture conditions and media. Breast cancer is the leading cancer in women, and metastasis is the major cause of death associated with breast cancer. The antimetastatic and antiangiogenic effects of kefir water made from kefir grains cultured in Malaysia were studied in 4T1 breast cancer cells.

    METHODS: 4T1 cancer cells were treated with kefir water in vitro to assess its antimigration and anti-invasion effects. BALB/c mice were injected with 4T1 cancer cells and treated orally with kefir water for 28 days.

    RESULTS: Kefir water was cytotoxic toward 4T1 cells at IC50 (half-maximal inhibitory concentration) of 12.5 and 8.33 mg/mL for 48 and 72 hours, respectively. A significant reduction in tumor size and weight (0.9132 ± 0.219 g) and a substantial increase in helper T cells (5-fold) and cytotoxic T cells (7-fold) were observed in the kefir water-treated group. Proinflammatory and proangiogenic markers were significantly reduced in the kefir water-treated group.

    CONCLUSIONS: Kefir water inhibited tumor proliferation in vitro and in vivo mainly through cancer cell apoptosis, immunomodulation by stimulating T helper cells and cytotoxic T cells, and anti-inflammatory, antimetastatic, and antiangiogenesis effects. This study brought out the potential of the probiotic beverage kefir water in cancer treatment.

  9. Fani S, Kamalidehghan B, Lo KM, Nigjeh SE, Keong YS, Dehghan F, et al.
    Sci Rep, 2016 Dec 15;6:38992.
    PMID: 27976692 DOI: 10.1038/srep38992
    In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/β-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links