Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Mohamad N, Latif MT, Khan MF
    Ecotoxicol Environ Saf, 2016 Feb;124:351-362.
    PMID: 26590697 DOI: 10.1016/j.ecoenv.2015.11.002
    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.
  2. Wahab MIA, Razak WMAA, Sahani M, Khan MF
    Sci Total Environ, 2020 Feb 10;703:135535.
    PMID: 31767333 DOI: 10.1016/j.scitotenv.2019.135535
    This study aimed to assess the concentrations and health effect of trace metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)] on the road dust of selected locations in the city of Kuala Lumpur. Sampling was conducted thrice at four locations, namely, Tun Razak Road, Raja Abdullah Road, Tunku Abdul Rahman (TAR) Road, and Ayer Molek Road. The concentrations of trace metals in road dust were analyzed by inductively coupled plasma mass spectrometry. TAR Road presented the highest Cd, Cu, Ni, and Pb contents compared with the other roads. The pollution level of trace metals in road dust was assessed by pollution index and pollution load index (PLI), showing that all studied locations were highly contaminated except Ayer Molek Road. Based on the PLI value, the sequence of pollution in descending order is as follows: TAR Road > Raja Abdullah Road > Tun Razak Road > Ayer Molek Road. Health risk assessment was performed to assess the health effects of carcinogenic and noncarcinogenic pollutants caused by the exposure to trace metals in road dust on adults and children. Based on the integrated hazard index values for children at all locations, >1 indicates a possible noncarcinogenic effect. All incremental lifetime cancer risk values for adult and children at all locations are within acceptable limits and are considered safe.
  3. Idris SA', Hanafiah MM, Khan MF, Hamid HHA
    Chemosphere, 2020 Sep;255:126932.
    PMID: 32402880 DOI: 10.1016/j.chemosphere.2020.126932
    The aim of the present study was to investigate the potential sources of heavy metals in fine air particles (PM2.5) and benzene, toluene, ethylbenzene, and isomeric xylenes (BTEX) in gas phase indoor air. PM2.5 samples were collected using a low volume sampler. BTEX samples were collected using passive sampling onto sorbent tubes and analyzed using gas chromatography-mass spectrometry (GC-MS). For the lower and upper floors of the evaluated building, the concentrations of PM2.5 were 96.4 ± 2.70 μg/m3 and 80.2 ± 3.11 μg/m3, respectively. The compositions of heavy metals in PM2.5 were predominated by iron (Fe), zinc (Zn), and aluminum (Al) with concentration of 500 ± 50.07 ng/m3, 466 ± 77.38 ng/m3, and 422 ± 147.38 ng/m3. A principal component analysis (PCA) showed that the main sources of BTEX were originated from vehicle emissions and exacerbate because of temperature variations. Hazard quotient results for BTEX showed that the compounds were below acceptable limits and thus did not possess potential carcinogenic risks. However, a measured output of lifetime cancer probability revealed that benzene and ethylbenzene posed definite carcinogenic risks. Pollutants that originated from heavy traffic next to the sampling site contributed to the indoor pollution.
  4. Ali MYM, Hanafiah MM, Khan MF
    Sci Total Environ, 2018 Jun 01;626:1-10.
    PMID: 29331833 DOI: 10.1016/j.scitotenv.2018.01.080
    This study aimed to measure the equilibrium equivalent radon (EECRn) concentration in an old building (Building-1) and a new building (Building-2) with mechanical ventilation and a natural ventilation system, respectively. Both buildings were located at the campus of University Kebangsaan Malaysia. The concentration of indoor radon was measured at 25 sampling stations using a radon detector model DOSEman PRO. The sampling was conducted for 8 h to represent daily working hours. A correlation of the radon concentration was made with the annual inhalation dose of the occupants at the indoor stations. The equilibrium factor and the annual effective dose on the lung cancer risks of each occupant were calculated at each sampling station. The average equilibrium equivalent radon measured in Building-1 and Building-2 was 2.33 ± 0.99 and 3.17 ± 1.74 Bqm-3, respectively. The equilibrium factor for Building 1 ranged from 0.1053 to 0.2273, and it ranged from 0.1031 to 0.16 for Building 2. The average annual inhalation doses recorded at Building-1 and Building-2 were 0.014 ± 0.005 mSv y-1and 0.020 ± 0.013 mSv y-1, respectively. The annual effective dose for Building-1 was 0.034 ± 0.012 mSv y-1, and it was 0.048 ± 0.031 mSv y-1for Building-2. The values of equilibrium equivalent radon concentration for both buildings were below the standard recommended by the International Commission on Radiological Protection (ICRP). However, people may have different radon tolerance levels. Therefore, the inhalation of the radon concentration can pose a deleterious health effect for people in an indoor environment.
  5. Rana MM, Sulaiman N, Sivertsen B, Khan MF, Nasreen S
    Environ Sci Pollut Res Int, 2016 Sep;23(17):17393-403.
    PMID: 27230142 DOI: 10.1007/s11356-016-6950-4
    Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (WHO) guideline value. Higher pollution and great contribution of PM2.5 most of the time were associated with the north-westerly wind. Winter (November to January) was found as the most polluted season in this area, when average PM10 concentrations in Dhaka, Gazipur, and Narayanganj were 257.1, 240.3, and 327.4 μg m(-3), respectively. Pollution levels during wet season (May-October) were, although found legitimate as per the national standards of Bangladesh, exceeded WHO guideline value in 50 % of the days of that season. Trans-boundary source identifications using concentration-weighted trajectory method revealed that the sources in the eastern Indian region bordering Bangladesh, in the north-eastern Indian region bordering Nepal and in Nepal and its neighboring areas had high probability of contributing to the PM pollutions at Gazipur station.
  6. Mustaffa NI, Latif MT, Ali MM, Khan MF
    Environ Sci Pollut Res Int, 2014 May;21(10):6590-602.
    PMID: 24532245 DOI: 10.1007/s11356-014-2562-z
    This study aims to determine the source apportionment of surfactants in marine aerosols at two selected stations along the Malacca Straits. The aerosol samples were collected using a high volume sampler equipped with an impactor to separate coarse- and fine-mode aerosols. The concentrations of surfactants, as methylene blue active substance and disulphine blue active substance, were analysed using colorimetric method. Ion chromatography was employed to determine the ionic compositions. Principal component analysis combined with multiple linear regression was used to identify and quantify the sources of atmospheric surfactants. The results showed that the surfactants in tropical coastal environments are actively generated from natural and anthropogenic origins. Sea spray (generated from sea-surface microlayers) was found to be a major contributor to surfactants in both aerosol sizes. Meanwhile, the anthropogenic sources (motor vehicles/biomass burning) were predominant contributors to atmospheric surfactants in fine-mode aerosols.
  7. Ee-Ling O, Mustaffa NI, Amil N, Khan MF, Latif MT
    Bull Environ Contam Toxicol, 2015 Apr;94(4):537-42.
    PMID: 25652682 DOI: 10.1007/s00128-015-1477-9
    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area.
  8. Latif MT, Dominick D, Ahamad F, Khan MF, Juneng L, Hamzah FM, et al.
    Sci Total Environ, 2014 Jun 1;482-483:336-48.
    PMID: 24662202 DOI: 10.1016/j.scitotenv.2014.02.132
    Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted.
  9. Alsalahi MA, Latif MT, Ali MM, Magam SM, Wahid NB, Khan MF, et al.
    Mar Pollut Bull, 2014 Mar 15;80(1-2):344-50.
    PMID: 24373668 DOI: 10.1016/j.marpolbul.2013.12.019
    This study aims to determine the levels of methylene blue active substances (MBAS) and ethyl violet active substances (EVAS) as anionic surfactants and of disulphine blue active substances (DBAS) as cationic surfactants in the surface microlayer (SML) around an estuarine area using colorimetric methods. The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS and EVAS) with average concentrations of 0.39 and 0.51 μmol L⁻¹, respectively. There were significant between-station differences in surfactant concentrations (p<0.05) with higher concentrations found at the stations near the sea. The concentration of surfactants was higher during the rainy season than the dry season due to the influence of runoff water. Further investigation using total organic carbon (TOC) and total organic nitrogen (TON) shows that there is a significant correlation (p<0.05) between both anionic and cationic surfactants and the TON concentration.
  10. Jaafar SA, Latif MT, Razak IS, Shaharudin MZ, Khan MF, Wahid NBA, et al.
    Mar Pollut Bull, 2016 Aug 15;109(1):480-489.
    PMID: 27230987 DOI: 10.1016/j.marpolbul.2016.05.017
    This study determined the effect of monsoonal changes on the composition of atmospheric surfactants in coastal areas. The composition of anions (SO4(2-), NO3(-), Cl(-), F(-)) and the major elements (Ca, K, Mg, Na) in aerosols were used to determine the possible sources of surfactants. Surfactant compositions were determined using a colorimetric method as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS). The anion and major element compositions of the aerosol samples were determined by ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results indicated that the concentrations of surfactant in aerosols were dominated by MBAS (34-326pmolm(-3)). Monsoonal changes were found to significantly affect the concentration of surfactants. Using principal component analysis-multiple linear regressions (PCA-MLR), major possible sources for surfactants in the aerosols were motor vehicle emissions, secondary aerosol and the combustion of biomass along with marine aerosol.
  11. Singh N, Banerjee T, Murari V, Deboudt K, Khan MF, Singh RS, et al.
    Chemosphere, 2021 Jan;263:128030.
    PMID: 33297051 DOI: 10.1016/j.chemosphere.2020.128030
    Size-segregated airborne fine (PM2.1) and coarse (PM>2.1) particulates were measured in an urban environment over central Indo-Gangetic plain in between 2015 and 2018 to get insights into its nature, chemistry and sources. Mean (±1σ) concentration of PM2.1 was 98 (±76) μgm-3 with a seasonal high during winter (DJF, 162 ± 71 μgm-3) compared to pre-monsoon specific high in PM>2.1 (MAMJ, 177 ± 84 μgm-3) with an annual mean of 170 (±69) μgm-3. PM2.1 was secondary in nature with abundant secondary inorganic aerosols (20% of particulate mass) and water-soluble organic carbon (19%) against metal enriched (25%) PM>2.1, having robust signature of resuspensions from Earth's crust and road dust. Ammonium-based neutralization of particulate acidity was essentially in PM2.1 with an indication of predominant H2SO4 neutralization in bisulfate form compared to Ca2+ and Mg2+-based neutralization in PM>2.1. Molecular distribution of n-alkanes homologues (C17-C35) showed Cmax at C23 (PM2.1) and C18 (PM>2.1) with weak dominance of odd-numbered n-alkanes. Carbon preference index of n-alkanes was close to unity (PM2.1: 1.4 ± 0.3; PM>2.1: 1.3 ± 0.4). Fatty acids (C12-C26) were characterized with predominance of even carbon with Cmax at n-hexadecanoic acid (C16:0). Low to high molecular weight fatty acid ratio ranged from 2.0 (PM>2.1) to 5.6 (PM2.1) with vital signature of anthropogenic emissions. Levoglucosan was abundant in PM2.1 (758 ± 481 ngm-3) with a high ratio (11.6) against galactosan, emphasizing robust contribution from burning of hardwood and agricultural residues. Receptor model resolves secondary aerosols and biomass burning emissions (45%) as the most influential sources of PM2.1 whereas, crustal (29%) and secondary aerosols (29%) were found responsible for PM>2.1; with significant variations among the seasons.
  12. Rahim HA, Khan MF, Ibrahim ZF, Shoaib A, Suradi H, Mohyeddin N, et al.
    Sci Total Environ, 2021 Aug 15;782:146783.
    PMID: 33838363 DOI: 10.1016/j.scitotenv.2021.146783
    Meteorology over coastal region is a driving factor to the concentration of air particles and reactive gases. This study aims to conduct a research to determine the level of year-round air particles and the interaction of the meteorological driving factors with the particle number and mass in 2018, which is moderately influenced by Southeast Asian haze. We obtained the measurement data for particle number count (PNC), mass, reactive gases, and meteorological factors from a Global Atmospheric Watch (GAW) station located at Bachok Marine Research Center, Bachok, Kelantan, Malaysia. For various timeseries and correlation analyses, a 60-second resolution of the data has been averaged hourly and daily and visualized further. Our results showed the slight difference in particle behavior that is either measured by unit mass or number count at the study area. Diurnal variations showed that particles were generally high during morning and night periods. Spike was observed in August for PM2.5/PNC2.5 and PM10/PNC10 and in November for PMCoarse/PNCCoarse. From a polar plot, the particles came from two distinct sources (e.g., seaside and roadside) at the local scale. Regional wind vector shows two distinct wind-blown directions from northeast and southwest. The air mases were transported from northeast (e.g., Philippines, mainland China, and Taiwan) or southwest (e.g., Sumatra) region. Correlation analysis shows that relative humidity, wind direction, and pressure influence the increase in particles, whereas negative correlation with temperature is observed, and wind speed may have a potential role on the decline of particle concentration. The particles at the study area was highly influenced by the changes in regional wind direction and speed.
  13. Bristy MS, Sarker KK, Baki MA, Quraishi SB, Hossain MM, Islam A, et al.
    Environ Toxicol Pharmacol, 2021 Aug;86:103666.
    PMID: 33895355 DOI: 10.1016/j.etap.2021.103666
    Metal contaminations in commercial fish have become a great public health concern worldwide including Bangladesh. The current study was conducted to provide preliminary evidence of nine metals in three commercially significant fish namely Pampus argenteus, Sardinella longiceps and Tenualosa ilisha collected from four coastal stations- Kuakata, Pathorghata, Cox's Bazar, and Pirojpur, and eight stations of five rivers- Padma, Meghna, Jamuna, Katcha, and Nobogonga in Bangladesh. High magnitudes of Pb (0.74-4.59 mg/kg ww), Cd (0.07-0.24 mg/kg ww), and Mn (0.45-2.03 mg/kg ww) were recorded in the sampling stations that exceeded the maximum permissible limits (MPL) proposed by different recognized organizations. Significant mean differences of metal concentrations were observed (p 
  14. Zain SMSM, Latif MT, Baharudin NH, Anual ZF, Mohd Hanif N, Khan MF
    Sci Total Environ, 2021 Aug 20;783:146929.
    PMID: 34088111 DOI: 10.1016/j.scitotenv.2021.146929
    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are toxic compounds derived from anthropogenic sources that stay in the environment for long periods. Ambient air has become the most important pathway for the transfer of PCDDs/PCDFs from emission sources to the environment. This review intends to summarise the information available on atmospheric PCDDs/PCDFs in the countries of Southeast Asia to provide a detailed description of the trends in PCDDs/PCDFs emissions, key sources, and levels in urban, rural, and industrial air as reported in peer-reviewed literature since 2000 and by the United Nations Environment Programme. As the largest country in Southeast Asia, Indonesia is the major PCDDs/PCDFs emitter, accounting for 72.81% of the total release of PCDDs/PCDFs in the air from all available inventories in this region, while Brunei Darussalam is the lowest emitter, contributing to less than 0.02%. Open burning processes have become the largest source of ambient PCDDs/PCDFs in the region (69.62%), followed by waste incineration (10.69%), and ferrous and non-ferrous metal production (8.78%). PCDDs/PCDFs levels in rural areas ranged between 10 and 38 fg TEQ m-3; however, where open burning waste has occurred, the levels rose to 12-29 times higher. In urban areas, ambient levels were 15 times greater than in rural areas, varying from 23 to 565 fg TEQ m-3. Atmospheric concentrations near industrial palm oil and waste incinerator sites were between 64 and 1530 fg TEQ m-3. The non-cancer risk of ambient exposure to PCDDs/PCDFs through inhalation is low among populations near facilities emitting PCDDs/PCDFs. The lack of local technical capacity, the high economic costs, and the lack of established human resource capacities have been the major challenges in conducting ambient PCDDs/PCDFs studies in most countries in the region.
  15. Akter S, Jahan I, Khatun MR, Khan MF, Arshad L, Jakaria M, et al.
    Biosci Rep, 2021 01 29;41(1).
    PMID: 33324970 DOI: 10.1042/BSR20203022
    Merremia vitifolia (Burm.f.) Hallier f., an ethnomedicinally important plant, used in the tribal areas to treat various ailments including fever, headache, eye inflammation, rheumatism, dysentery, jaundice and urinary diseases. The present study explored the biological efficacy of the aqueous fraction of M. vitifolia leaves (AFMV) through in vitro and in vivo experimental models. The thrombolytic and anti-arthritic effects of AFMV were evaluated by using the clot lysis technique and inhibition of protein denaturation technique, respectively. The anti-nociceptive activity of AFMV was investigated in Swiss Albino mice by acetic acid-induced writhing test and formalin-induced paw licking test. The antioxidant activities of AFMV, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and total reducing power, were also tested. The qualitative phytochemical assays exhibited AFMV contains secondary metabolites such as alkaloid, carbohydrate, flavonoid, tannin, triterpenoids and phenols. In addition, AFMV showed strong antioxidant effects with the highest scavenging activity (IC50 146.61 µg/mL) and reducing power was increased with a dose-dependent manner. AFMV also revealed notable clot lysis effect and substantial anti-arthritic activity at higher doses (500 µg/mL) as compared with the control. The results demonstrated a promising reduction of the number of writhing and duration of paw licking in acetic acid-induced writhing test and formalin-induced paw licking test in a dose-dependent manner, respectively. In conclusion, AFMV provides the scientific basis of its folkloric usage, suggesting it as the vital source of dietary supplement.
  16. Dahari N, Muda K, Latif MT, Dominick D, Hussein N, Khan MF
    PMID: 34596792 DOI: 10.1007/s10653-021-01099-3
    The smaller particles that dominate the particle number concentration (PNC) in the ambient air only contribute to a small percentage of particulate matter (PM) mass concentration although present in high particle number concentration. These small particles may be neglected upon assessing the health impacts of the PM. Hence, the knowledge on the particle number concentration size distribution deserves greater attention than the particulate mass concentration. This study investigates the measurement of the particle mass concentrations (PM2.5) and PNC of 0.27 μm 
  17. Sakai N, Yamamoto S, Matsui Y, Khan MF, Latif MT, Ali Mohd M, et al.
    Sci Total Environ, 2017 May 15;586:1279-1286.
    PMID: 28236484 DOI: 10.1016/j.scitotenv.2017.02.139
    Volatile Organic Compounds (VOCs) in indoor air were investigated at 39 private residences in Selangor State, Malaysia to characterize the indoor air quality and to identify pollution sources. Twenty-two VOCs including isomers (14 aldehydes, 5 aromatic hydrocarbons, acetone, trichloroethylene and tetrachloroethylene) were collected by 2 passive samplers for 24h and quantitated using high performance liquid chromatography and gas chromatography mass spectrometry. Source profiling based on benzene/toluene ratio as well as statistical analysis (cluster analysis, bivariate correlation analysis and principal component analysis) was performed to identify pollution sources of the detected VOCs. The VOCs concentrations were compared with regulatory limits of air quality guidelines in WHO/EU, the US, Canada and Japan to clarify the potential health risks to the residents. The 39 residences were classified into 2 groups and 2 ungrouped residences based on the dendrogram in the cluster analysis. Group 1 (n=30) had mainly toluene (6.87±2.19μg/m3), formaldehyde (16.0±10.1μg/m3), acetaldehyde (5.35±4.57μg/m3) and acetone (11.1±5.95μg/m3) at background levels. Group 2 (n=7) had significantly high values of formaldehyde (99.3±10.7μg/m3) and acetone (35.8±12.6μg/m3), and a tendency to have higher values of acetaldehyde (23.7±13.5μg/m3), butyraldehyde (3.35±0.41μg/m3) and isovaleraldehyde (2.30±0.39μg/m3). The 2 ungrouped residences showed particularly high concentrations of BTX (benzene, toluene and xylene: 235μg/m3 in total) or acetone (133μg/m3). The geometric mean value of formaldehyde (19.2μg/m3) exceeded an 8-hour regulatory limit in Canada (9μg/m3), while those in other compounds did not exceed any regulatory limits, although a few residences exceeded at least one regulatory limit of benzene or acetaldehyde. Thus, the VOCs in the private residences were effectively characterized from the limited number of monitoring, and the potential health risks of the VOCs exposure, particularly formaldehyde, should be considered in the study area.
  18. Hamid HHA, Latif MT, Uning R, Nadzir MSM, Khan MF, Ta GC, et al.
    Environ Monit Assess, 2020 May 08;192(6):342.
    PMID: 32382809 DOI: 10.1007/s10661-020-08311-4
    Benzene, toluene, ethylbenzene and xylenes (BTEX) are well known hazardous volatile organic compounds (VOCs) due to their human health risks and photochemical effects. The main objective of this study was to estimate BTEX levels and evaluate interspecies ratios and ozone formation potentials (OFP) in the ambient air of urban Kuala Lumpur (KL) based on a passive sampling method with a Tenax® GR adsorbent tube. Analysis of BTEX was performed using a thermal desorption (TD)-gas chromatography mass spectrometer (GCMS). OFP was calculated based on the Maximum Incremental Reactivity (MIR). Results from this study showed that the average total BTEX during the sampling period was 66.06 ± 2.39 μg/m3. Toluene (27.70 ± 0.97 μg/m3) was the highest, followed by m,p-xylene (13.87 ± 0.36 μg/m3), o-xylene (11.49 ± 0.39 μg/m3), ethylbenzene (8.46 ± 0.34 μg/m3) and benzene (3.86 ± 0.31 μg/m3). The ratio of toluene to benzene (T:B) is > 7, suggesting that VOCs in the Kuala Lumpur urban environment are influenced by vehicle emissions and other anthropogenic sources. The average of ozone formation potential (OFP) value from BTEX was 278.42 ± 74.64 μg/m3 with toluene and xylenes being the major contributors to OFP. This study also indicated that the average of benzene concentration in KL was slightly lower than the European Union (EU)-recommended health limit value for benzene of 5 μg/m3 annual exposure.
  19. Khan MF, Latif MT, Amil N, Juneng L, Mohamad N, Nadzir MS, et al.
    Environ Sci Pollut Res Int, 2015 Sep;22(17):13111-26.
    PMID: 25925145 DOI: 10.1007/s11356-015-4541-4
    Principal component analysis (PCA) and correlation have been used to study the variability of particle mass and particle number concentrations (PNC) in a tropical semi-urban environment. PNC and mass concentration (diameter in the range of 0.25->32.0 μm) have been measured from 1 February to 26 February 2013 using an in situ Grimm aerosol sampler. We found that the 24-h average total suspended particulates (TSP), particulate matter ≤10 μm (PM10), particulate matter ≤2.5 μm (PM2.5) and particulate matter ≤1 μm (PM1) were 14.37 ± 4.43, 14.11 ± 4.39, 12.53 ± 4.13 and 10.53 ± 3.98 μg m(-3), respectively. PNC in the accumulation mode (<500 nm) was the most abundant (at about 99 %). Five principal components (PCs) resulted from the PCA analysis where PC1 (43.8 % variance) predominates with PNC in the fine and sub-microme tre range. PC2, PC3, PC4 and PC5 explain 16.5, 12.4, 6.0 and 5.6 % of the variance to address the coarse, coarser, accumulation and giant fraction of PNC, respectively. Our particle distribution results show good agreement with the moderate resolution imaging spectroradiometer (MODIS) distribution.
  20. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6024-33.
    PMID: 25382497 DOI: 10.1007/s11356-014-3781-z
    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links