Displaying all 5 publications

Abstract:
Sort:
  1. Khan NR, Wong TW
    Expert Opin Drug Deliv, 2016 09;13(9):1209-19.
    PMID: 27212391 DOI: 10.1080/17425247.2016.1193152
    OBJECTIVES: Skin drug retention is required in local treatment of skin cancer. This study investigated the interplay effects of ethosomes and microwave in transdermal drug delivery. Skin pre-treatment by microwave and applied with liquified medicine is deemed to 'cement' the skin thereby raising skin drug deposition.

    METHODS: 5-fluorouracil-loaded ethosomes were prepared and subjected to size, zeta potential, morphology, drug content, drug release and skin permeation tests. The molecular characteristics of untreated, microwave and/or ethosome-treated skins were examined by Fourier transform infrared and raman spectroscopy, thermal and electron microscopy techniques.

    RESULTS: The skin drug retention was promoted using larger ethosomes with negative zeta potentials that repelled anionic lipids of skin and hindered vesicle permeation into deep layers. These ethosomes had low ethanol content. They were less able to fluidize the lipid and defluidize the protein domains at epidermis to enlarge aqueous pores for drug permeation. Pre-treatment of skin by 2450 MHz microwave for 2.5 min further increased skin drug penetration and retention of low ethanol ethosomes and provided lower drug permeation than cases treated for 1.15 min and 5 min. A 2.5 min treatment might be accompanied by specific dermal protein fluidization via C=O moiety which translated to macromolecular swelling, narrowing of intercellular spaces at lower skin layers, increased drug retention and reduced drug permeation.

    CONCLUSION: Ethosomes and microwave synergized to promote skin drug retention.

  2. Khan NR, Wong TW
    Artif Cells Nanomed Biotechnol, 2018;46(sup1):568-577.
    PMID: 29378453 DOI: 10.1080/21691401.2018.1431650
    This study focuses on the use of ethosome and microwave technologies to facilitate skin penetration and/or deposition of 5-fluorouracil in vitro and in vivo. Low ethanol ethosomes were designed and processed by mechanical dispersion technique and had their size, zeta potential, morphology, drug content and encapsulation efficiency characterized. The skin was pre-treated with microwave at 2450 MHz for 2.5 min with ethosomes applied topically and subjected to in vitro and in vivo skin drug permeation as well as retention evaluation. The drug and/or ethosomes cytotoxicity, uptake and intracellular trafficking by SKMEL-28 melanoma cell culture were evaluated. Pre-treatment of skin by microwave promoted significant drug deposition in skin from ethosomes in vitro while keeping the level of drug permeation unaffected. Similar observations were obtained in vivo with reduced drug permeation into blood. Combination ethosome and microwave technologies enhanced intracellular localization of ethosomes through fluidization of cell membrane lipidic components as well as facilitating endocytosis by means of clathrin, macropinocytosis and in particularly lipid rafts pathways. The synergistic use of microwave and ethosomes opens a new horizon for skin malignant melanoma treatment.
  3. Khan NR, Harun MS, Nawaz A, Harjoh N, Wong TW
    Curr Pharm Des, 2015;21(20):2848-66.
    PMID: 25925113
    Transdermal drug delivery is impeded by the natural barrier of epidermis namely stratum corneum. This limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500 Da and melting point of less than 200°C. Nanotechnology has received widespread investigation as nanocarriers are deemed to be able to fluidize the stratum corneum as a function of size, shape, surface charges, and hydrophilicity-hydrophobicity balance, while delivering drugs across the skin barrier. This review provides an overview and update on the latest designs of liposomes, ethosomes, transfersomes, niosomes, magnetosomes, oilin- water nanoemulsions, water-in-oil nanoemulsions, bicontinuous nanoemulsions, covalently crosslinked polysaccharide nanoparticles, ionically crosslinked polysaccharide nanoparticles, polyelectrolyte coacervated nanoparticles and hydrophobically modified polysaccharide nanoparticles with respect to their ability to fuse or fluidize lipid/protein/tight junction regimes of skin, and effect changes in skin permeability and drug flux. Universal relationships of nanocarrier size, zeta potential and chemical composition on transdermal permeation characteristics of drugs will be developed and discussed.
  4. Adnan AAZ, Khan NR, Rosdi SAB, Yunus NKY, Ghouri AM, Haq MA
    Data Brief, 2018 Dec;21:1880-1885.
    PMID: 30519611 DOI: 10.1016/j.dib.2018.10.169
    Data were collected from administration officers ranging from middle-management to top management of the five universities of Malaysia. The data was collected through a standardized and structured questionnaire. The variables of the study were religiosity, personality and work behavior of Muslims. Muslim work behavior construct formulated on the basis on collected data.
  5. Basit HM, Mohd Amin MCI, Ng SF, Katas H, Shah SU, Khan NR
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33171959 DOI: 10.3390/polym12112608
    Improved physicochemical properties of chitosan-curcumin nanoparticulate carriers using microwave technology for skin burn wound application are reported. The microwave modified low molecular weight chitosan variant was used for nanoparticle formulation by ionic gelation method nanoparticles analyzed for their physicochemical properties. The antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa cultures, cytotoxicity and cell migration using human dermal fibroblasts-an adult cell line-were studied. The microwave modified chitosan variant had significantly reduced molecular weight, increased degree of deacetylation and decreased specific viscosity. The nanoparticles were nano-sized with high positive charge and good dispersibility with entrapment efficiency and drug content in between 99% and 100%, demonstrating almost no drug loss. Drug release was found to be sustained following Fickian the diffusion mechanism for drug release with higher cumulative drug release observed for formulation (F)2. The microwave treatment does not render a destructive effect on the chitosan molecule with the drug embedded in the core of nanoparticles. The optimized formulation precluded selected bacterial strain colonization, exerted no cytotoxic effect, and promoted cell migration within 24 h post application in comparison to blank and/or control application. Microwave modified low molecular weight chitosan-curcumin nanoparticles hold potential in delivery of curcumin into the skin to effectively treat skin manifestations.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links