Methods: A targeted GWAS was used to investigate whether ten candidate genes with known roles in corneal development were associated with CCT in two Singaporean populations. The single nucleotide polymorphisms (SNPs) within a 500 kb interval encompassing each candidate were analyzed, and in light of the resulting data, members of the Wnt pathway were subsequently screened using similar methodology.
Results: Variants within the 500 kb interval encompassing three candidate genes, DKK1 (rs1896368, p=1.32×10-3), DKK2 (rs17510449, p=7.34×10-4), and FOXO1 (rs7326616, p=1.56×10-4 and rs4943785, p=1.19×10-3), were statistically significantly associated with CCT in the Singapore Indian population. DKK2 was statistically significantly associated with CCT in a separate Singapore Malaysian population (rs10015200, p=2.26×10-3). Analysis of Wnt signaling pathway genes in each population demonstrated that TCF7L2 (rs3814573, p=1.18×10-3), RYK (rs6763231, p=1.12×10-3 and rs4854785, p=1.11×10-3), and FZD8 (rs640827, p=5.17×10-4) were statistically significantly associated with CCT.
Conclusions: The targeted GWAS identified four genes (DKK1, DKK2, RYK, and FZD8) with novel associations with CCT and confirmed known associations with two genes, FOXO1 and TCF7L2. All six participate in the Wnt pathway, supporting a broader role for Wnt signaling in regulating the thickness of the cornea. In parallel, this study demonstrated that a hypothesis-driven candidate gene approach can identify associations in existing GWAS data sets.
Methods: A total of 3843 participants (7,020 healthy eyes) were enrolled from the Singapore Epidemiology of Eye Diseases (SEED) study, a population-based study composing of three major ethnic groups-Malay, Indian, and Chinese-in Singapore. Ocular examinations were performed, and spectral-domain optical coherence tomography (SD-OCT) was used to measure circumpapillary RNFL thickness. We selected 35 independent glaucoma-associated genetic loci for analysis. An linear regression model was conducted to determine the association of these variants with circumpapillary RNFL, assuming an additive genetic model. We conducted association analysis in each of the three ethnic groups, followed by a meta-analysis of them.
Results: The mean age of the included participants was 59.4 ± 8.9 years, and the mean RFNL thickesss is 92.3 ± 11.2 µm. In the meta-analyses, of the 35 glacuoma loci, we found that only SIX6 was significantly associated with reduction in global RNFL thickness (rs33912345; β = -1.116 um per risk allele, P = 1.64E-05), and the effect size was larger in the inferior RNFL quadrant (β = -2.015 µm, P = 2.9E-6), and superior RNFL quadrant (β = -1.646 µm, P = 6.54E-5). The SIX6 association were consistently observed across all three ethnic groups. Other than RNFL, we also found several genetic varaints associated with vertical cuo-to-disc ratio (ATOH7, CDKN2B-AS1, and TGFBR3-CDC7), rim area (SIX6 and CDKN2B-AS1), and disc area (SIX6, ATOH7, and TGFBR3-CDC7). The association of SIX6 rs33912345 with NRFL thickness remained similar after further adjusting for disc area and 3 other disc parameter associated SNPs (ATOH7, CDKN2B-AS1, and TGFBR3-CDC7).
Conclusions: Of the 35 glaucoma identified risk loci, only SIX6 is significantly and independently associated with thinner RNFL. Our study further supports the involvement of SIX6 with RNFL thickness and pathogensis of glaucoma.
METHODS: We did a genome-wide association study of 189 patients with extranodal NKTCL, nasal type (WHO classification criteria; cases) and 957 controls from Guangdong province, southern China. We validated our findings in four independent case-control series, including 75 cases from Guangdong province and 296 controls from Hong Kong, 65 cases and 983 controls from Guangdong province, 125 cases and 1110 controls from Beijing (northern China), and 60 cases and 2476 controls from Singapore. We used imputation and conditional logistic regression analyses to fine-map the associations. We also did a meta-analysis of the replication series and of the entire dataset.
FINDINGS: Associations exceeding the genome-wide significance threshold (p<5 × 10(-8)) were seen at 51 single-nucleotide polymorphisms (SNPs) mapping to the class II MHC region on chromosome 6, with rs9277378 (located in HLA-DPB1) having the strongest association with NKTCL susceptibility (p=4·21 × 10(-19), odds ratio [OR] 1·84 [95% CI 1·61-2·11] in meta-analysis of entire dataset). Imputation-based fine-mapping across the class II MHC region suggests that four aminoacid residues (Gly84-Gly85-Pro86-Met87) in near-complete linkage disequilibrium at the edge of the peptide-binding groove of HLA-DPB1 could account for most of the association between the rs9277378*A risk allele and NKTCL susceptibility (OR 2·38, p value for haplotype 2·32 × 10(-14)). This association is distinct from MHC associations with Epstein-Barr virus infection.
INTERPRETATION: To our knowledge, this is the first time that a genetic variant conferring an NKTCL risk is noted at genome-wide significance. This finding underlines the importance of HLA-DP antigen presentation in the pathogenesis of NKTCL.
FUNDING: Top-Notch Young Talents Program of China, Special Support Program of Guangdong, Specialized Research Fund for the Doctoral Program of Higher Education (20110171120099), Program for New Century Excellent Talents in University (NCET-11-0529), National Medical Research Council of Singapore (TCR12DEC005), Tanoto Foundation Professorship in Medical Oncology, New Century Foundation Limited, Ling Foundation, Singapore National Cancer Centre Research Fund, and the US National Institutes of Health (1R01AR062886, 5U01GM092691-04, and 1R01AR063759-01A1).
Objectives: To identify novel genome-wide significant loci for PD in Asian individuals and to compare genetic risk between Asian and European cohorts.
Design Setting, and Participants: Genome-wide association data generated from PD cases and controls in an Asian population (ie, Singapore/Malaysia, Hong Kong, Taiwan, mainland China, and South Korea) were collected from January 1, 2016, to December 31, 2018, as part of an ongoing study. Results were combined with inverse variance meta-analysis, and replication of top loci in European and Japanese samples was performed. Discovery samples of 31 575 individuals passing quality control of 35 994 recruited were used, with a greater than 90% participation rate. A replication cohort of 1 926 361 European-ancestry and 3509 Japanese samples was analyzed. Parkinson disease was diagnosed using UK Parkinson's Disease Society Brain Bank Criteria.
Main Outcomes and Measures: Genotypes of common variants, association with disease status, and polygenic risk scores.
Results: Of 31 575 samples identified, 6724 PD cases (mean [SD] age, 64.3 [10] years; age at onset, 58.8 [10.6] years; 3472 [53.2%] men) and 24 851 controls (age, 59.4 [11.4] years; 11 030 [45.0%] men) were analyzed in the discovery study. Eleven genome-wide significant loci were identified; 2 of these loci were novel (SV2C and WBSCR17) and 9 were previously found in Europeans. Replication in European-ancestry and Japanese samples showed robust association for SV2C (rs246814; odds ratio, 1.16; 95% CI, 1.11-1.21; P = 1.17 × 10-10 in meta-analysis of discovery and replication samples) but showed potential genetic heterogeneity at WBSCR17 (rs9638616; I2=67.1%; P = 3.40 × 10-3 for hetereogeneity). Polygenic risk score models including variants at these 11 loci were associated with a significant improvement in area under the curve over the model based on 78 European loci alone (63.1% vs 60.2%; P = 6.81 × 10-12).
Conclusions and Relevance: This study identified 2 apparently novel gene loci and found 9 previously identified European loci to be associated with PD in this large, meta-genome-wide association study in a worldwide population of Asian individuals and reports similarities and differences in genetic risk factors between Asian and European individuals in the risk for PD. These findings may lead to improved stratification of Asian patients and controls based on polygenic risk scores. Our findings have potential academic and clinical importance for risk stratification and precision medicine in Asia.
METHODS: We did a genome-wide association study of NKTCL in multiple populations from east Asia. We recruited a discovery cohort of 700 cases with NKTCL and 7752 controls without NKTCL of Han Chinese ancestry from 19 centres in southern, central, and northern regions of China, and four independent replication samples including 717 cases and 12 650 controls. Three of these independent samples (451 cases and 5301 controls) were from eight centres in the same regions of southern, central, and northern China, and the fourth (266 cases and 7349 controls) was from 11 centres in Hong Kong, Taiwan, Singapore, and South Korea. All cases had primary NKTCL that was confirmed histopathologically, and matching with controls was based on geographical region and self-reported ancestry. Logistic regression analysis was done independently by geographical regions, followed by fixed-effect meta-analyses, to identify susceptibility loci. Bioinformatic approaches, including expression quantitative trait loci, binding motif and transcriptome analyses, and biological experiments were done to fine-map and explore the functional relevance of genome-wide association loci to the development of NKTCL.
FINDINGS: Genetic data were gathered between Jan 1, 2008, and Jan 23, 2019. Meta-analysis of all samples (a total of 1417 cases and 20 402 controls) identified two novel loci significantly associated with NKTCL: IL18RAP on 2q12.1 (rs13015714; p=2·83 × 10-16; odds ratio 1·39 [95% CI 1·28-1·50]) and HLA-DRB1 on 6p21.3 (rs9271588; 9·35 × 10-26 1·53 [1·41-1·65]). Fine-mapping and experimental analyses showed that rs1420106 at the promoter of IL18RAP was highly correlated with rs13015714, and the rs1420106-A risk variant had an upregulatory effect on IL18RAP expression. Cell growth assays in two NKTCL cell lines (YT and SNK-6 cells) showed that knockdown of IL18RAP inhibited cell proliferation by cell cycle arrest in NKTCL cells. Haplotype association analysis showed that haplotype 47F-67I was associated with reduced risk of NKTCL, whereas 47Y-67L was associated with increased risk of NKTCL. These two positions are component parts of the peptide-binding pocket 7 (P7) of the HLA-DR heterodimer, suggesting that these alterations might account for the association at HLA-DRB1, independent of the previously reported HLA-DPB1 variants.
INTERPRETATION: Our findings provide new insights into the development of NKTCL by showing the importance of inflammation and immune regulation through the IL18-IL18RAP axis and antigen presentation involving HLA-DRB1, which might help to identify potential therapeutic targets. Taken in combination with additional genetic and other risk factors, our results could potentially be used to stratify people at high risk of NKTCL for targeted prevention.
FUNDING: Guangdong Innovative and Entrepreneurial Research Team Program, National Natural Science Foundation of China, National Program for Support of Top-Notch Young Professionals, Chang Jiang Scholars Program, Singapore Ministry of Health's National Medical Research Council, Tanoto Foundation, National Research Foundation Singapore, Chang Gung Memorial Hospital, Recruitment Program for Young Professionals of China, First Affiliated Hospital and Army Medical University, US National Institutes of Health, and US National Cancer Institute.
METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases).
RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk.
CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry.