BACKGROUND: No study has directly compared the risk factors associated with subclinical coronary atherosclerosis and CRA.
STUDY: This was a cross-sectional study using multinomial logistic regression analysis of 4859 adults who participated in a health screening examination (2010 to 2011; analysis 2014 to 2015). CAC scores were categorized as 0, 1 to 100, or >100. Colonoscopy results were categorized as absent, low-risk, or high-risk CRA.
RESULTS: The prevalence of CAC>0, CAC 1 to 100 and >100 was 13.0%, 11.0%, and 2.0%, respectively. The prevalence of any CRA, low-risk CRA, and high-risk CRA was 15.1%, 13.0%, and 2.1%, respectively. The adjusted odds ratios (95% confidence interval) for CAC>0 comparing participants with low-risk and high-risk CRA with those without any CRA were 1.35 (1.06-1.71) and 2.09 (1.29-3.39), respectively. Similarly, the adjusted odds ratios (95% confidence interval) for any CRA comparing participants with CAC 1 to 100 and CAC>100 with those with no CAC were 1.26 (1.00-1.6) and 2.07 (1.31-3.26), respectively. Age, smoking, diabetes, and family history of CRC were significantly associated with both conditions.
CONCLUSIONS: We observed a graded association between CAC and CRA in apparently healthy individuals. The coexistence of both conditions further emphasizes the need for more evidence of comprehensive approaches to screening and the need to consider the impact of the high risk of coexisting disease in individuals with CAC or CRA, instead of piecemeal approaches restricted to the detection of each disease independently.
METHODS: A cohort study was conducted in 77,425 men and women free of NAFLD and metabolic abnormalities at baseline, who were followed-up annually or biennially for an average of 4.5 years. Being metabolically healthy was defined as not having any metabolic syndrome component and having a homeostasis model assessment of insulin resistance <2.5. The presence of fatty liver was determined using ultrasound.
RESULTS: During 348,193.5 person-years of follow-up, 10,340 participants developed NAFLD (incidence rate, 29.7 per 1,000 person-years). The multivariable adjusted hazard ratios (95% confidence intervals) for incident NAFLD comparing overweight and obese with normal-weight participants were 2.15 (2.06-2.26) and 3.55 (3.37-3.74), respectively. In detailed dose-response analyses, increasing baseline BMI showed a strong and approximately linear relationship with the incidence of NAFLD, with no threshold at no risk. This association was present in both men and women, although it was stronger in women (P for interaction <0.001), and it was evident in all clinically relevant subgroups evaluated, including participants with low inflammation status.
CONCLUSIONS: In a large cohort of strictly defined metabolically healthy men and women, overweight and obesity were strongly and progressively associated with an increased incidence of NAFLD, suggesting that the obese phenotype per se, regardless of metabolic abnormalities, can increase the risk of NAFLD.