Displaying all 5 publications

Abstract:
Sort:
  1. Ng MH, Kushairi A
    Molecules, 2017 Aug 29;22(9).
    PMID: 28850073 DOI: 10.3390/molecules22091424
    There are six tocol analogs present in palm oil, namely α-tocopherol (α-T), α-tocomonoenol (α-T₁), α-tocotrienol (α-T₃), γ-tocotrienol (γ-T₃), β-tocotrioenol (β-T₃) and δ-tocotrienol (δ-T₃). These analogs were difficult to separate chromatographically due to their similar structures, physical and chemical properties. This paper reports on the effect of pressure and injection solvent on the separation of the tocol analogs in palm oil. Supercritical CO₂ modified with ethanol was used as the mobile phase. Both total elution time and resolution of the tocol analogs decreased with increased pressure. Ethanol as an injection solvent resulted in peak broadening of the analogs within the entire pressure range studied. Solvents with an eluent strength of 3.4 or less were more suitable for use as injecting solvents.
  2. Rafii MY, Jalani BS, Rajanaidu N, Kushairi A, Puteh A, Latif MA
    Genet. Mol. Res., 2012;11(4):3629-41.
    PMID: 23096688 DOI: 10.4238/2012.October.4.10
    We evaluated 38 dura x pisifera (DP) oil palm progenies in four locations in Malaysia for genotype by environment interaction and genotypic stability studies. The DP progenies derived from crosses between pisifera palms of AVROS, Serdang S27B, Serdang 29/36, and Lever Cameroon were chosen to be the males' parent and Deli dura palms designated as females' parent. All the locations differed in terms of soil physical and chemical properties, and the soil types ranged from coastal clay to inland soils. The genotype by environment interaction and stability of the individual genotypes were analyzed for oil yield trait using several stability techniques. A genotype by environment interaction was detected for oil yield and it had a larger variance component than genotypic variance (σ(2)(gl)/σ(2)(g) = 139.7%). Genotype by environment interaction of oil yield was largely explained by a non-linear relationship between genotypic and environmental values. Overall assessment of individual genotypic stability showed that seven genotypes were highly stable and had consistent performance over the environments for the oil yield trait [total individual genotype stability scored more than 10 and mean oil yielded above the average of the environment (genotype means are more than 34.37 kg·palm(-1)·year(-1))]. These genotypes will be useful for oil palm breeding and tissue culture programs for developing high oil yielding planting materials with stable performance.
  3. Noh A, Rafii MY, Saleh G, Kushairi A, Latif MA
    ScientificWorldJournal, 2012;2012:792601.
    PMID: 22701095 DOI: 10.1100/2012/792601
    The performance of 11 oil palm AVROS (Algemene Vereniging van Rubberplanters ter Oostkust van Sumatra) pisiferas was evaluated based on their 40 dura x pisifera (DxP) progenies tested on inland soils, predominantly of Serdang Series. Fresh fruit bunch (FFB) yield of each pisiferas ranged from 121.93 to 143.9 kg palm⁻¹ yr⁻¹ with trial mean of 131.62 kg palm⁻¹ yr⁻¹. Analysis of variance (ANOVA) showed low genetic variability among pisifera parents for most of the characters indicating uniformity of the pisifera population. This was anticipated as the AVROS pisiferas were derived from small population and were inbred materials. However, some of the pisiferas have shown good general combining ability (GCA) for certain important economic traits. Three pisiferas (P1 (0.174/247), P3 (0.174/498), P11 (0.182/308)) were identified of having good GCA for FFB yield while pisiferas P1 (0.174/247), P10 (0.182/348), and P11 (0.182/308) were good combiners for oil-to-bunch ratio (O/B). The narrow genetic base of these materials was the main obstacle in breeding and population improvement. However, efforts have been made to introgress this material with the vast oil palm germplasm collections of MPOB for rectifying the problem.
  4. Noh A, Rafii MY, Mohd Din A, Kushairi A, Norziha A, Rajanaidu N, et al.
    Genet. Mol. Res., 2014;13(2):2426-37.
    PMID: 24781997 DOI: 10.4238/2014.April.3.15
    Twelve introgressed oil palm (Elaeis guineensis) progenies of Nigerian dura x Deli dura were evaluated for bunch yield, yield attributes, bunch quality components and vegetative characters at the Malaysian Palm Oil Board Research Station, in Keratong, Pahang, Malaysia. Analysis of variance revealed significant to highly significant genotypic differences, indicating sufficient genetic variability among the progenies for bunch yield and its attributes, vegetative characters and bunch quality components, except fruit to bunch ratio. Fresh fruit bunch yield ranged from 167 kg·palm(-1)·year(-1) in PK1330 to 212 kg·palm(-1)·year(-1) in PK1351, with a mean yield of 192 kg·palm(-1)·year(-1). Among the progeny, PK1313 had the highest oil to bunch ratio (19.36%), due to its high mesocarp to fruit ratio, fruit to bunch ratio and low shell to fruit ratio. Among the progenies, PK1313 produced the highest oil yield of 31.4 kg·palm(-1)·year(-1), due to a high mesocarp to fruit ratio (61.2%) and a low shell to fruit ratio (30.7%), coupled with high fruit to bunch ratio (65.6%). PK1330 was found promising for selection, as it had desirable vegetative characters, including smaller petiole cross section (27.15 cm2), short rachis length (4.83 m), short palm height (1.85 m), and the lowest leaf number (164.6), as these vegetative characters are prerequisites for selecting palms for high density planting and high yield per hectare. The genetic variability among the progenies was found to be high, indicating ample scope for further breeding, followed by selection.
  5. Ting NC, Yaakub Z, Kamaruddin K, Mayes S, Massawe F, Sambanthamurthi R, et al.
    BMC Genomics, 2016;17(1):289.
    PMID: 27079197 DOI: 10.1186/s12864-016-2607-4
    The commercial oil palm (Elaeis guineensis Jacq.) produces a mesocarp oil (commonly called 'palm oil') with approximately equal proportions of saturated and unsaturated fatty acids (FAs). An increase in unsaturated FAs content or iodine value (IV) as a measure of the degree of unsaturation would help to open up new markets for the oil. One way to manipulate the fatty acid composition (FAC) in palm oil is through introgression of favourable alleles from the American oil palm, E. oleifera, which has a more unsaturated oil.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links