Displaying all 8 publications

Abstract:
Sort:
  1. Lan T, Yao Z, Zheng G, Wongprom P, Li S
    Zootaxa, 2020 May 14;4778(2):zootaxa.4778.2.4.
    PMID: 33055822 DOI: 10.11646/zootaxa.4778.2.4
    The genus Savarna Huber, 2005 comprises only five species, from southern Thailand, Peninsular Malaysia and Sumatra. In this study, five new species are described from Thailand: Savarna bannang sp. nov. (Yala), S. chiangmai sp. nov. (Chiangmai), S. huahin sp. nov. (Prachuap Kiri Khan), S. satun sp. nov. (Satun), S. thungsong sp. nov. (Nakhon Srithammarat). All new species are described from males and females. The distribution of S. chiangmai sp. nov. represent the northernmost record of the genus.
  2. Luo J, Wang X, Yang Y, Lan T, Ashraf MA, Mao Q
    West Indian Med J, 2015 12;64(5):540-542.
    PMID: 27399315 DOI: 10.7727/wimj.2016.059
    We report a case of a patient with AIDS and a brain abscess caused by aspergillus, who underwent neurosurgical excision of the lesion and received subsequent therapy with voriconazole. The patient suffered from intracranial hypertension and visual disorders.
  3. Huang K, Zhou J, Yang H, Xie T, Lan T, Ong S, et al.
    RSC Adv, 2023 Nov 16;13(48):33905-33910.
    PMID: 38019995 DOI: 10.1039/d3ra05659g
    The Ni-rich NCM622 is a promising cathode material for future high energy lithium ion batteries, but unstable electrochemical performance of NCM622 hinder its large scale commercial application. The cycling peformance of nickel-rich LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode materials can be improved by surface coating. Here, a one-step approach based on TiF4 is used to successfully manufacture modified NCM622 cathode materials with a TiO2-LiF coating. The TiO2-LiF coated NCM622 preserves 79.7% capacity retention which is higher than the pure NCM622 (68.9%) at 1C after 200 cycles within 2.7-4.3 V. This material serves as the cathode for lithium-ion batteries (LIBs). The uniform TiO2-LiF coating layer can alleviate structural degradation brought on by unfavorable side reactions with the electrolyte has been validated. TiO2-LiF coated on NCM622 cathode materials can be modified easily by one-step approach.
  4. Lan T, Zhou J, Xie T, Huang K, Ong S, Yang H, et al.
    J Colloid Interface Sci, 2024 Jul 10;676:1-12.
    PMID: 39018802 DOI: 10.1016/j.jcis.2024.07.007
    Spinel Li4Ti5O12 (LTO), a zero-strain material, is a promising anode material for solid-state thin-film lithium-ion batteries (TFB). However, the preparation of high-performance Li4Ti5O12 thin-film electrodes through facile methods remains a significant challenge. Herein, we present a novel approach to prepare a binder- and conductor-free porous Li4Ti5O12 (P-LTO) thin-film. This approach polyvinyl alcohol (PVA)-assisted spray deposition and does not require the use of complex or expensive methods. Adding PVA to the precursor solution effectively prevents thin-film cracking during high-temperature annealing, enhances adhesion, and forms a highly interconnected porous structure. This unique structure shortens the lithium-ion diffusion pathways and facilitates electron transport. Therefore, P-LTO thin film electrodes demonstrate exceptional rate capacity of 104.1 mAh/g at a current density of 100C. In addition, the electrodes exhibit ultra-long cycle stability, retaining 80.9 % capacity after 10,000 cycles at 10C. This work offers a novel approach for the preparation of high-performance thin-film electrodes for TFBs.
  5. Tai TW, Chen HY, Shih CA, Huang CF, McCloskey E, Lee JK, et al.
    Osteoporos Sarcopenia, 2024 Mar;10(1):3-10.
    PMID: 38690538 DOI: 10.1016/j.afos.2024.02.001
    OBJECTIVES: This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition. The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach.

    METHODS: A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and antiresorptive agents in sequential therapy approaches.

    RESULTS: The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to antiresorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for individuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment.

    CONCLUSIONS: This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management.

  6. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
  7. Bousquet J, Jutel M, Akdis CA, Klimek L, Pfaar O, Nadeau KC, et al.
    Allergy, 2021 Mar;76(3):689-697.
    PMID: 32588922 DOI: 10.1111/all.14471
  8. Bousquet J, Agache I, Blain H, Jutel M, Ventura MT, Worm M, et al.
    Allergy, 2021 10;76(10):2952-2964.
    PMID: 33811358 DOI: 10.1111/all.14838
    Older adults, especially men and/or those with diabetes, hypertension, and/or obesity, are prone to severe COVID-19. In some countries, older adults, particularly those residing in nursing homes, have been prioritized to receive COVID-19 vaccines due to high risk of death. In very rare instances, the COVID-19 vaccines can induce anaphylaxis, and the management of anaphylaxis in older people should be considered carefully. An ARIA-EAACI-EuGMS (Allergic Rhinitis and its Impact on Asthma, European Academy of Allergy and Clinical Immunology, and European Geriatric Medicine Society) Working Group has proposed some recommendations for older adults receiving the COVID-19 vaccines. Anaphylaxis to COVID-19 vaccines is extremely rare (from 1 per 100,000 to 5 per million injections). Symptoms are similar in younger and older adults but they tend to be more severe in the older patients. Adrenaline is the mainstay treatment and should be readily available. A flowchart is proposed to manage anaphylaxis in the older patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links