Methodology: To increase workflow reliability, we propose the Fault and Intrusion-tolerant Workflow Scheduling algorithm (FITSW). The proposed workflow system uses task executors consisting of many virtual machines to carry out workflow tasks. FITSW duplicates each sub-task three times, uses an intermediate data decision-making mechanism, and then employs a deadline partitioning method to determine sub-deadlines for each sub-task. This way, dynamism is achieved in task scheduling using the resource flow. The proposed technique generates or recycles task executors, keeps the workflow clean, and improves efficiency. Experiments were conducted on WorkflowSim to evaluate the effectiveness of FITSW using metrics such as task completion rate, success rate and completion time.
Results: The results show that FITSW not only raises the success rate by about 12%, it also improves the task completion rate by 6.2% and minimizes the completion time by about 15.6% in comparison with intrusion tolerant scientific workflow ITSW system.
METHODS: In this study, we proposed a novel texture extraction-based CS for lung cancer classification. We classify three types of lung cancer, including adenocarcinoma (ACA), squamous cell carcinoma (SCC), and benign lung cancer (N). The classification is carried out based on texture extraction, which is processed in 2 stages, the first stage to detect N and the second to detect ACA and SCC.
RESULTS: The simulation results show that two-stage texture extraction can improve accuracy by an average of 84%. The proposed system is expected to be decision support in assisting clinical diagnosis. In terms of technical storage, this system can save memory resources.
CONCLUSIONS: The proposed two-step texture extraction system combined with CS and K- Nearest Neighbor has succeeded in classifying lung cancer with high accuracy; the system can also save memory storage. It is necessary to examine the complexity of the proposed method so that it can be analyzed further.