Displaying all 6 publications

Abstract:
Sort:
  1. Gao X, Liu H, Wang H, Fu S, Guo Z, Liang G
    PLoS Negl Trop Dis, 2013;7(9):e2459.
    PMID: 24069502 DOI: 10.1371/journal.pntd.0002459
    Although a previous study predicted that Japanese encephalitis virus (JEV) originated in the Malaysia/Indonesia region, the virus is known to circulate mainly on the Asian continent. However, there are no reported systematic studies that adequately define how JEV then dispersed throughout Asia.
  2. Liang G, Kow ASF, Tham CL, Ho YC, Lee MT
    Antioxidants (Basel), 2022 Nov 03;11(11).
    PMID: 36358550 DOI: 10.3390/antiox11112179
    Osteoporosis, or bone loss, is a disease that affects many women globally. As life expectancy increases, the risk of osteoporosis in women also increases, too, and this will create a burden on the healthcare and economic sectors of a country. Osteoporosis was once thought to be a disease that would occur only after menopause. However, many studies have shown that osteoporosis may develop even in the perimenopausal stage. Due to the erratic levels of estrogen and progesterone during the perimenopausal stage, studies suggest that women are exposed to the risk of developing osteoporosis even at this stage. The erratic hormonal changes result in the production of proinflammatory mediators and cause oxidative stress, which leads to the progressive loss of bone-building activities. Tocotrienols, members of vitamin E, have many health-promoting properties. Due to their powerful anti-oxidative and anti-inflammatory properties, tocotrienols have shown positive anti-osteoporotic properties in post-menopausal studies. Hence, we propose here that tocotrienols could also possibly alleviate perimenopausal osteoporosis by discussing in this review the connection between inflammatory mediators produced during perimenopause and the risk of osteoporosis. Tocotrienols could potentially be an anti-osteoporotic agent, but due to their low bioavailability, they have not been as effective as they could be. Several approaches have been evaluated to overcome this issue, as presented in this review. As the anti-osteoporotic effects of tocotrienols were mostly studied in post-menopausal models, we hope that this review could pave the way for more research to be done to evaluate their effect on peri-menopausal models so as to reduce the risk of osteoporosis from an earlier stage.
  3. Lai JY, Ho JX, Kow ASF, Liang G, Tham CL, Ho YC, et al.
    Front Immunol, 2023;14:1048592.
    PMID: 36911685 DOI: 10.3389/fimmu.2023.1048592
    Interferons (IFNs) are important in controlling the innate immune response to viral infections. Besides that, studies have found that IFNs also have antimicrobial, antiproliferative/antitumor and immunomodulatory effects. IFNs are divided into Type I, II and III. Type I IFNs, in particular IFN-α, is an approved treatment for hepatitis C. However, patients developed neuropsychological disorders during treatment. IFN-α induces proinflammatory cytokines, indoleamine 2,3-dioxygenase (IDO), oxidative and nitrative stress that intensifies the body's inflammatory response in the treatment of chronic inflammatory disease. The severity of the immune response is related to behavioral changes in both animal models and humans. Reactive oxygen species (ROS) is important for synaptic plasticity and long-term potentiation (LTP) in the hippocampus. However, excess ROS will generate highly reactive free radicals which may lead to neuronal damage and neurodegeneration. The limbic system regulates memory and emotional response, damage of neurons in this region is correlated with mood disorders. Due to the drawbacks of the treatment, often patients will not complete the treatment sessions, and this affects their recovery process. However, with proper management, this could be avoided. This review briefly describes the different types of IFNs and its pharmacological and clinical usages and a focus on IFN-α and its implications on depression.
  4. Kuang G, Xu Z, Wang J, Gao Z, Yang W, Wu W, et al.
    Microbiol Spectr, 2023 Aug 17;11(4):e0512222.
    PMID: 37306586 DOI: 10.1128/spectrum.05122-22
    Nelson Bay reovirus (NBV) is an emerging zoonotic virus that can cause acute respiratory disease in humans. These viruses are mainly discovered in Oceania, Africa, and Asia, and bats have been identified as their main animal reservoir. However, despite recent expansion of diversity for NBVs, the transmission dynamics and evolutionary history of NBVs are still unclear. This study successfully isolated two NBV strains (MLBC1302 and MLBC1313) from blood-sucking bat fly specimens (Eucampsipoda sundaica) and one (WDBP1716) from the spleen specimen of a fruit bat (Rousettus leschenaultii), which were collected at the China-Myanmar border area of Yunnan Province. Syncytia cytopathic effects (CPE) were observed in BHK-21 and Vero E6 cells infected with the three strains at 48 h postinfection. Electron micrographs of ultrathin sections showed numerous spherical virions with a diameter of approximately 70 nm in the cytoplasm of infected cells. The complete genome nucleotide sequence of the viruses was determined by metatranscriptomic sequencing of infected cells. Phylogenetic analysis demonstrated that the novel strains were closely related to Cangyuan orthoreovirus, Melaka orthoreovirus, and human-infecting Pteropine orthoreovirus HK23629/07. Simplot analysis revealed the strains originated from complex genomic reassortment among different NBVs, suggesting the viruses experienced a high reassortment rate. In addition, strains successfully isolated from bat flies also implied that blood-sucking arthropods might serve as potential transmission vectors. IMPORTANCE Bats are the reservoir of many viral pathogens with strong pathogenicity, including NBVs. Nevertheless, it is unclear whether arthropod vectors are involved in transmitting NBVs. In this study, we successfully isolated two NBV strains from bat flies collected from the body surface of bats, which implies that they may be vectors for virus transmission between bats. While the potential threat to humans remains to be determined, evolutionary analyses involving different segments revealed that the novel strains had complex reassortment histories, with S1, S2, and M1 segments highly similar to human pathogens. Further experiments are required to determine whether more NBVs are vectored by bat flies, their potential threat to humans, and transmission dynamics.
  5. Lei W, Guo X, Fu S, Feng Y, Tao X, Gao X, et al.
    Vet Microbiol, 2017 Mar;201:32-41.
    PMID: 28284620 DOI: 10.1016/j.vetmic.2017.01.003
    BACKGROUND: Since the turn of the 21st century, there have been several epidemic outbreaks of poultry diseases caused by Tembusu virus (TMUV). Although multiple mosquito and poultry-derived strains of TMUV have been isolated, no data exist about their comparative study, origin, evolution, and dissemination.

    METHODOLOGY: Parallel virology was used to investigate the phenotypes of duck and mosquito-derived isolates of TMUV. Molecular biology and bioinformatics methods were employed to investigate the genetic characteristics and evolution of TMUV.

    PRINCIPAL FINDINGS: The plaque diameter of duck-derived isolates of TMUV was larger than that of mosquito-derived isolates. The cytopathic effect (CPE) in mammalian cells occurred more rapidly induced by duck-derived isolates than by mosquito-derived isolates. Furthermore, duck-derived isolates required less time to reach maximum titer, and exhibited higher viral titer. These findings suggested that poultry-derived TMUV isolates were more invasive and had greater expansion capability than the mosquito-derived isolates in mammalian cells. Variations in amino acid loci in TMUV E gene sequence revealed two mutated amino acid loci in strains isolated from Malaysia, Thailand, and Chinese mainland compared with the prototypical strain of the virus (MM1775). Furthermore, TMUV isolates from the Chinese mainland had six common variations in the E gene loci that differed from the Southeast Asian strains. Phylogenetic analysis indicated that TMUV did not exhibit a species barrier in avian species and consisted of two lineages: the Southeast Asian and the Chinese mainland lineages. Molecular traceability studies revealed that the recent common evolutionary ancestor of TMUV might have appeared before 1934 and that Malaysia, Thailand and Shandong Province of China represent the three main sources related to TMUV spread.

    CONCLUSIONS: The current broad distribution of TMUV strains in Southeast Asia and Chinese mainland exhibited longer-range diffusion and larger-scale propagation. Therefore, in addition to China, other Asian and European countries linked to Asia have used improved measures to detect and monitor TMUV related diseases to prevent epidemics in poultry.

  6. Gao X, Liu H, Li X, Fu S, Cao L, Shao N, et al.
    Vector Borne Zoonotic Dis, 2019 Jan;19(1):35-44.
    PMID: 30207876 DOI: 10.1089/vbz.2018.2291
    Japanese encephalitis virus (JEV) is a representative virus of the JEV serogroup in genus Flavivirus, family Flaviviridae. JEV is a mosquito-borne virus that causes Japanese encephalitis (JE), one of the most severe viral encephalitis diseases in the world. JEV is divided into five genotypes (G1-G5), and each genotype has its own distribution pattern. However, the distribution of different JEV genotypes has changed markedly in recent years. JEV G1 has replaced G3 as the dominant genotype in the traditional epidemic areas in Asia, while G3 has spread from Asia to Europe and Africa and caused domestic JE cases in Africa. G2 and G5, which were endemic in Malaysia, exhibited great geographical changes as well. G2 migrated southward and led to prevalence of JE in Australia, while G5 emerged in China and South Korea after decades of silence. Along with these changes, JE occurred in some non-traditional epidemic regions as an emerging infectious disease. The regional changes in JEV pose a great threat to human health, leading to huge disease burdens. Therefore, it is of great importance to strengthen the monitoring of JEV as well as virus genotypes, especially in non-traditional epidemic areas.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links