This paper aims to observe and analyze effects of Codonopsis pilosula water extract on micro RNA (miRNA) expression profile in liver tissue of senile mice. The 110 Konminmice were randomly divided into five groups, including D-galactose-induced senile model group, normal control group, and low, middle and high dose intervention groups. Continuous modeling lasted 40 days. General symptoms and changes of body mass of the model mice were monitored and observed. The levels of serum glutamic pyruvic transaminase (ALT) and alkaline phosphatase (ALP) of mice were compared, and miRNA of differential expression during aging of D-galactose-induction and high-dose Codonopsis pilosula intervention was analyzed. The serum ALT and ALP levels in the aging model group were significantly higher than those in the normal control group (P<0.05). The serum ALT and ALP levels of Codonopsis pilosula intervention group were lower than those of aging model group, and decrease in ALP value of high dose intervention group was higher (P<0.05). The expression profile of miRNA in the aging model group was significantly different from that in normal control group and high-dose Codonopsis pilosula intervention group, and miRNA expression profile in high-dose Codonopsis pilosula intervention group was clustered with that in the normal control group. The differentially expressed miRNAs of D-galactose-induced senescence and Codonopsis pilosula anti-aging usually belong to 7 miRNA clusters. The target gene function of the differentially expressed miRNAs during senescence process was enriched in 29 signal pathways. There were 67 regulatory signal pathways in differentially expressed miRNA target genes during Codonopsis pilosula intervention. The effect of miRNA targeting may play an important role during D-galactose-induced senescence and Codonopsis pilosula anti-aging period.
The prolongation of life span has attracted more and more attention in the current world. Gut microbiota is considered one of the most critical elements and is essential in regulating life span and quality. The effects of donkey whey protein (DWP) and donkey whey hydrolysate (DWPP) on physiological functions and gut microbiota of D-galactose-induced aging mice were investigated to find new strategies for resisting aging. Our results showed that DWP and DWPP could increase the body weight gain velocity, superoxide dismutase (SOD) activity, and thymus index, whereas decrease the level of reactive oxygen species (ROS) and malondialdehyde (MDA), and improve the aging of the body in the liver congestion, oozy draw focal sclerosis of chronic inflammation. The effects of medium and high concentrations of DWP and low and medium concentrations of DWPP were the same as the vitamin C (Vc)-positive control group. It was found that both DWP and DWPP could change α-diversity; the relative abundance of Lactobacillus increased, whereas the relative abundance of Helicobacter and Stenotrophomonas decreased after being treated with DWP and DWPP. The correlation between intestinal microflora and physiological indexes showed that chao1, ACE, and observed species indexes in the α index were positively correlated with weight gain velocity, SOD activity, and thymus index. The relative abundance of Lactobacillus was positively correlated with SOD and thymus index but negatively correlated with MDA. The relative abundance of Stenotrophomonas was opposite to that of Lactobacillus. The Anaerobiospirillum, Fusobacterium, and Dubosiella had a significant positive correlation with the weight gain velocity. The study provided a deeper more profound understanding of the potential use of DWP and DWPP in senescence delays.
Breast cancer screening (BCS) is a critical preventive measure that can significantly reduce mortality rates. Despite its importance, screening hesitancy remains a global issue. This paper showcases the combination of the Health Belief Model (HBM) and the 5C Model and how it provides a more holistic understanding of BCS hesitancy. The first model, HBM, is a well-regarded tool that collects data based on individual beliefs such as perceived susceptibility, severity, benefits, barriers, cues to action, and self-efficacy. The second model, the 5C Model, stands for confidence, convenience, complacency, constraints, and risk and responsibility calculations. This model adds a layer of environmental considerations that HBM lacks. By combining these models, we can identify the key psychological, social, and structural barriers that contribute to BCS hesitancy. Furthermore, analysis of the literature suggests that enhancing trust in healthcare systems, increasing accessibility and affordability of screening, addressing cultural and social stigmas, and promoting a sense of collective responsibility can significantly improve screening participation rates, which are reflected in the models.
Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
The Amur ide (Leuciscus waleckii) is a fish in the Cyprinidae family. Compared with other Amur ide living in freshwater ecosystems, the Amur ide population in Lake Dali Nor of China is famous for its high tolerance to the alkaline conditions of 54 mM (pH 9.6). Yet, surprisingly, the ionoregulatory mechanism responsible for this remarkable alkaline adaptation remains unclear. Therefore, this study sought to investigate how bicarbonate affects the acid-base balancing and ionoregulatory responses of this animal. Here, using a comparative approach, the alkali form of Amur ide and its ancestral freshwater form living in other freshwater basins were each exposed to 50 mM (pH 9.59 ± 0.09), a level close to the alkalinity of Lake Dali Nor, and their physiological (AE1) adjustment of ions and acid-base regulation were investigated. This study highlighted differences in blood pH and serum ions (e.g., Na+, K+, Cl-, and Ca2+), Na+/K+ ATPase (NKA) activity and its mRNA level, and mRNA expression of gill transporters (Na+/H+ exchanger member 2 and/or 3, Na+/ HCO 3 - cotransporter (NBC1), Cl-/ HCO 3 - exchanger, Na+/Cl- cotransporter (NCC), Na+/K+/2Cl- (NKCC1), SLC26A5, and SLC26A6) for alkalinity adaptation between the two forms of Amur ide differing in alkalinity tolerance. Specifically, close relationships among the serum Na+ and mRNA levels of NCC, NKCC1, and NHE, and also NKA and NBC1, in addition to serum Cl- and bicarbonate transporters (e.g., SLC26A5 and SLC26A6), characterized the alkali form of Amur ide. We propose that this ecotype can ensure its transepithelial Cl- and Na+ uptake/base secretions are highly functional, by its basolateral NKA with NBC1 and apical ionic transporters, and especially NCC incorporated with other transporters (e.g., SLC26). This suggests an evolved strong ability to maintain an ion osmotic and acid-base balance for more effectively facilitating its adaptability to the high alkaline environment. This study provides new insights into the physiological responses of the alkaline form of the Amur ide fish for adapting to extreme alkaline conditions. This information could be used as a reference to cultivating alkaline-tolerant fish species in abandoned alkaline waters.
Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) predisposes to ventricular arrhythmia due to altered Ca(2+) homeostasis and can arise from ryanodine receptor (RyR2) mutations including RyR2-P2328S. Previous reports established that homozygotic murine RyR2-P2328S (RyR2 (S/S)) hearts show an atrial arrhythmic phenotype associated with reduced action potential (AP) conduction velocity and sodium channel (Nav1.5) expression. We now relate ventricular arrhythmogenicity and slowed AP conduction in RyR2 (S/S) hearts to connexin-43 (Cx43) and Nav1.5 expression and Na(+) current (I Na). Stimulation protocols applying extrasystolic S2 stimulation following 8 Hz S1 pacing at progressively decremented S1S2 intervals confirmed an arrhythmic tendency despite unchanged ventricular effective refractory periods (VERPs) in Langendorff-perfused RyR2 (S/S) hearts. Dynamic pacing imposing S1 stimuli then demonstrated that progressive reductions of basic cycle lengths (BCLs) produced greater reductions in conduction velocity at equivalent BCLs and diastolic intervals in RyR2 (S/S) than WT, but comparable changes in AP durations (APD90) and their alternans. Western blot analyses demonstrated that Cx43 protein expression in whole ventricles was similar, but Nav1.5 expression in both whole tissue and membrane fractions were significantly reduced in RyR2 (S/S) compared to wild-type (WT). Loose patch-clamp studies similarly demonstrated reduced I Na in RyR2 (S/S) ventricles. We thus attribute arrhythmogenesis in RyR2 (S/S) ventricles resulting from arrhythmic substrate produced by reduced conduction velocity to downregulated Nav1.5 reducing I Na, despite normal determinants of repolarization and passive conduction. The measured changes were quantitatively compatible with earlier predictions of linear relationships between conduction velocity and the peak I Na of the AP but nonlinear relationships between peak I Na and maximum Na(+) permeability.
Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.