Talon cusps were observed in a 10-year-old boy and his 12-year-old sister. Although the sister's affected tooth was asymptomatic and free of any occlusal interference, the boy's tooth presented some problems. The affected tooth had displaced the occluding mandibular tooth lingually, and this had resulted in a mid-line shift. To overcome the problem, the talon cusp was ground off and a prophylactic odontotomy performed. Orthodontic treatment was later carried out.
The dorsal skin of 18 healthy Sprague-Dawley rats was used to investigate the reaction of connective tissue to buffered and unbuffered glutaraldehyde. Both the agents produced well-circumscribed lesions that underwent resolution within 30 days. Observation also shows that 2.0% buffered and unbuffered glutaraldehyde maintained a relatively inflammation-free status in connective tissue.
Delayed replantation of an avulsed tooth with an open apex resulted in failure of revascularization, necrosis of the pulp and extensive external root resorption. Removal of the necrotic pulp and repeated intra-canal dressings of calcium hydroxide over a three year period arrested the inflammatory resorptive process. The process was replaced by replacement resorption leading to ankylosis and infra-occlusion of the affected tooth. As the tooth was asymptomatic, it was retained in the arch to act as a space maintainer. To improve aesthetics, the crown was recontoured using a light-cured resin.
A case of talon cusp in the primary maxillary left central incisor is reported. This dental anomaly was not associated with any other somatic or dental abnormality. Though pulpal extension into the cusp was detected radiographically, clinical examination after the cusp was ground failed to reveal any pulpal extension. The tooth was badly carious and was restored with a polycarbonate crown.
An unusual presentation of rampant caries in a child was described. Lactose from bovine milk, bad feeding habits and poor oral hygiene appear to play a major role in its aetiology.
Five hundred and thirty-six patients were examined for the presence of talon cusps. The anomaly was observed in 28 patients (5.2 per cent). There was no sex predilection in the occurrence. Only two patients had a bilateral occurrence, with the maxillary lateral incisors being the most commonly affected. Radiographic evidence of pulpal extension into the cusp was observed in five patients. Many of the affected teeth presented with deep developmental grooves some of which were carious and/or occlusal interference leading to malocclusion.
The prevalence, possible etiological factors and management of hypodontia was briefly reviewed. A report of a case of hypodontia affecting the primary and permanent lower incisors was described.
Incidence, aetiology, morphology, histology and symptoms of natal or neonatal teeth are presented. The commonly used terminology natal and neonatal teeth is adopted in this article. A case of an 8-week old girl with natal tooth and sublingual ulceration of the tip of the tongue is described.
The problem of dental decay was studied in a sample of 495 Chinese preschool children in Petaling Jaya. The children; 253 males and 242 females ranged in age from 3-6 years. 18.6% of the children was observed to suffer from rampant caries. Only 18.8% were caries free. The dft values ranged from 2.9 +/- 3.12 at 3 years to 5.85 +/- 3.41 at 6 years. The overall mean dft for this group was 4.99 +/- 3.81. Dental treatment was very inadequate. The decayed filled tooth ratio was 6.5:1.
Basal stem rot (BSR) is a devastating disease to Malaysian oil palm. Current techniques employed for BSR disease detection on oil palm are laborious, time consuming, costly, and subjected to accuracy limitations. An ergosterol detection method was developed, whereby it correlated well with the degree of infection in oil palm. This current study was designed to study the relationship between Ganoderma biomass, ergosterol concentration, BSR disease progress and to validate the efficiency of microwave assisted extraction (MAE) method for extraction of ergosterol compound. In addition, testing on the sensitivity of thin layer chromatography (TLC) analysis for detection of ergosterol was also the aim of this study. The optimised procedure involved extracting a small amount of Ganoderma-infected oil palm root tissues suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30 s, resulting in simultaneous extraction and saponification. Based on the results obtained, MAE method may be effective in extracting low to high yields of ergosterol from infected oil palm roots demonstrating disease scale 2, 3 and 4. Positive relationship was observed between ergosterol content and inoculation period starting day 3 in the inoculated oil palm seedlings and hour 6 in germinated seeds. TLC analysis demonstrated a good correlation with high performance liquid chromatography (HPLC) quantification. Therefore, a semi-quantitative TLC analysis may be applied for handling a large amount of samples during onset field survey.
The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment.
Microencapsulation is a process by which tiny parcels of an active ingredient are packaged within a second material for the purpose of shielding the active ingredient from the surrounding environment. This study aims to determine the ability of the microencapsulation technique to improve the viability of Trichoderma harzianum UPM40 originally isolated from healthy groundnut roots as effective biological control agents (BCAs). Alginate was used as the carrier for controlled release, and montmorillonite clay (MMT) served as the filler. The encapsulated Ca-alginate-MMT beads were characterised using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The FTIR results showed the interaction between the functional groups of alginate and MMT in the Ca-alginate-MMT beads. Peaks at 1595, 1420 and 1020 cm(-1) characterised alginate, and peaks at 1028 and 453 cm(-1) characterised MMT; both sets of peaks appeared in the Ca-alginate-MMT FTIR spectrum. The TGA analysis showed an improvement in the thermal stability of the Ca-alginate-MMT beads compared with the alginate beads alone. SEM analysis revealed a homogeneous distribution of the MMT particles throughout the alginate matrix. T. harzianum UPM40 was successfully encapsulated in the Ca-alginate-MMT beads. Storage analysis of the encapsulated T. harzianum UPM40 showed that the low storage temperature of 5°C resulted in significantly (p
Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.
Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum.
The extraction of pectin from dragon fruit (Hylocereus polyrhizus) peels under three different extraction conditions was identified as an alternative source of commercial pectin. In this work, dried alcohol-insoluble residues (AIR) of dragon fruit peels were treated separately with 0.25% ammonium oxalate/oxalic acid at a pH of 4.6 at 85oC; 0.03 M HCl at a pH of 1.5 at 85oC; and de-ionized water at 75oC. The pectin obtained from these methods was compared in terms of yield, physicochemical properties and chemical structure. Fourier Transform Infrared Spectroscopy (FTIR) was used in the identification of dragon fruit pectins. The results showed that the pectin yield (14.96-20.14% based on dry weight), moisture content (11.13-11.33%), ash content (6.88-11.55%), equivalent weight (475.64-713.99), methoxyl content (2.98-4.34%), anhydrouronic acid (45.25-52.45%) and the degree of esterification (31.05-46.96%) varied significantly (p < 0.05) with the various extraction conditions used. Pectin extracted with ammonium oxalate gave the highest yield of pectin, with high purity and low ash content. Based on the value of methoxyl content and the degree of esterification, dragon fruit pectin can be categorized as low-methoxyl pectin.