Displaying all 3 publications

Abstract:
Sort:
  1. Mohamed Muzni NH, Mhd Noor EE, Abdullah MMAB
    Nanomaterials (Basel), 2023 Oct 23;13(20).
    PMID: 37887960 DOI: 10.3390/nano13202811
    This study investigated the influence of reinforcing 0.50 wt.% of titanium oxide (TiO2) and aluminium oxide (Al2O3) nanoparticles on the wettability performance of a Sn-3.0Ag-0.5Cu (SAC305) solder alloy. The thermal properties of the SAC305 nanocomposite solder are comparable with thos of an SAC305 solder with a peak temperature window within a range of 240 to 250 °C. The wetting behaviour of the non-reinforced and reinforced SAC305 nanocomposite solder was determined and measured using the contact angle and spreading area and the relationships between them were studied. There is an increment in the spreading area (5.6 to 7.32 mm) by 30.71% and a reduction in the contact angle (26.3 to 18.6°) by 14.29% with an increasing reflow time up to 60 s when reinforcing SAC305 solder with 0.50 wt.% of TiO2 and Al2O3 nanoparticles. The SAC305 nanocomposite solder has a better wetting performance compared with the SAC305 solder. As the reflow time increased, the spreading area increased and the contact angle decreased, which restricted intermetallic compound growth and thus improved wettability performance.
  2. Chong K, Mhd Noor EE, Amir A, Baig MF
    Materials (Basel), 2024 Nov 04;17(21).
    PMID: 39517665 DOI: 10.3390/ma17215391
    Welding is a crucial process in joining metals, especially in the fabrication industry. Thisresearch aimed to investigate the effects of using two different filler materials, ER70S-6 and ER308LSi, with nine combinations of wire feeder speed (WFS) and shielding gas flow rate (GFR), on weld joints. The study focused on the weld quality and material properties of Gas Metal Arc Welded (GMAW) butt joints of ASTM A516 G70 plates, characterized through visual inspection, liquid penetrant testing, tensile testing, hardness testing, and optical microscopy. Results indicated that the highest ultimate tensile strength and hardness were achieved at 4 m/min WFS and 15 L/min GFR with ER70S-6, and 5 m/min WFS and 20 L/min GFR with ER308LSi. The specimens welded with ER308LSi demonstrated superior mechanical properties compared to those welded with ER70S-6. Additionally, the study revealed the influence of microstructural changes from the base metal (BM) to the heat-affected zone (HAZ) and fusion zone (FZ), with finer and more compact grain structures contributing to higher hardness values. These findings underscore the importance of selecting appropriate filler materials, WFS, and GFR to achieve the desired weld quality and material properties for A516 G70 low-carbon steel welded joints.
  3. Al-Ahdal SA, Ahmad Kayani AB, Md Ali MA, Chan JY, Ali T, Adnan N, et al.
    Int J Mol Sci, 2019 Jul 23;20(14).
    PMID: 31340481 DOI: 10.3390/ijms20143595
    We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aβ) in a microfluidic environment. The Aβ was separated from the cells and characterized using the gradual dissolution of Aβ as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aβ under specific dielectrophoretic parameters. Further, Aβ in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aβ fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aβ to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aβ-related colloidal microfluidic research and could be applied to Alzheimer's research in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links