Displaying all 19 publications

Abstract:
Sort:
  1. Ravee R, Mohd Salleh F', Goh HH
    PeerJ, 2018;6:e4914.
    PMID: 29888132 DOI: 10.7717/peerj.4914
    Background: Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry.

    Methods: This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts).

    Results: Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants.

    Discussion: These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.

  2. Mohammed Abubakar B, Mohd Salleh F, Shamsir Omar MS, Wagiran A
    PMID: 28536641 DOI: 10.1155/2017/1352948
    In the last two decades, there has been a tremendous increase in the global use of herbal medicinal products (HMPs) due to their claimed health benefits. This has led to increase in their demand and consequently, also, resulted in massive adulteration. This is due to the fact that most of the traditional methods cannot identify closely related species in a process product form. Therefore the urgent need for simple and rapid identification methods resulted in the discovery of a novel technique. DNA barcoding is a process that uses short DNA sequence from the standard genome for species identification. This technique is reliable and is not affected by external factors such as climates, age, or plant part. The difficulties in isolation of DNA of high quality in addition to other factors are among the challenges encountered using the DNA barcoding in the authentication of HMP. These limitations indicated that using DNA barcoding alone may ineffectively authenticate the HMP. Therefore, the combination of DNA barcoding with chromatographic fingerprint, a popular and generally accepted technique for the assessment and quality control of HMP, will offer an efficient solution to effectively evaluate the authenticity and quality consistency of HMP. Detailed and quality information about the main composition of the HMPs will help to ascertain their efficacy and safety as these are very important for quality control.
  3. Goh HH, Baharin A, Mohd Salleh F', Ravee R, Wan Zakaria WNA, Mohd Noor N
    Sci Rep, 2020 04 20;10(1):6575.
    PMID: 32313042 DOI: 10.1038/s41598-020-63696-z
    Carnivorous pitcher plants produce specialised pitcher organs containing secretory glands, which secrete acidic fluids with hydrolytic enzymes for prey digestion and nutrient absorption. The content of pitcher fluids has been the focus of many fluid protein profiling studies. These studies suggest an evolutionary convergence of a conserved group of similar enzymes in diverse families of pitcher plants. A recent study showed that endogenous proteins were replenished in the pitcher fluid, which indicates a feedback mechanism in protein secretion. This poses an interesting question on the physiological effect of plant protein loss. However, there is no study to date that describes the pitcher response to endogenous protein depletion. To address this gap of knowledge, we previously performed a comparative RNA-sequencing experiment of newly opened pitchers (D0) against pitchers after 3 days of opening (D3C) and pitchers with filtered endogenous proteins (>10 kDa) upon pitcher opening (D3L). Nepenthes ampullaria was chosen as a model study species due to their abundance and unique feeding behaviour on leaf litters. The analysis of unigenes with top 1% abundance found protein translation and stress response to be overrepresented in D0, compared to cell wall related, transport, and signalling for D3L. Differentially expressed gene (DEG) analysis identified DEGs with functional enrichment in protein regulation, secondary metabolism, intracellular trafficking, secretion, and vesicular transport. The transcriptomic landscape of the pitcher dramatically shifted towards intracellular transport and defence response at the expense of energy metabolism and photosynthesis upon endogenous protein depletion. This is supported by secretome, transportome, and transcription factor analysis with RT-qPCR validation based on independent samples. This study provides the first glimpse into the molecular responses of pitchers to protein loss with implications to future cost/benefit analysis of carnivorous pitcher plant energetics and resource allocation for adaptation in stochastic environments.
  4. Tarmizi AAA, Wagiran A, Mohd Salleh F, Chua LS, Abdullah FI, Hasham R, et al.
    Plants (Basel), 2021 Apr 07;10(4).
    PMID: 33917172 DOI: 10.3390/plants10040717
    Labisia pumila is a precious herb in Southeast Asia that is traditionally used as a health supplement and has been extensively commercialized due to its claimed therapeutic properties in boosting a healthy female reproductive system. Indigenous people used these plants by boiling the leaves; however, in recent years it has been marketed as powdered or capsuled products. Accordingly, accuracy in determination of the authenticity of these modern herbal products has faced great challenges. Lack of authenticity is a public health risk because incorrectly used herbal species can cause adverse effects. Hence, any measures that may aid product authentication would be beneficial. Given the widespread use of Labisia herbal products, the current study focuses on authenticity testing via an integral approach of DNA barcoding and qualitative analysis using HPLC. This study successfully generated DNA reference barcodes (ITS2 and rbcL) for L. pumila var. alata and pumila. The DNA barcode that was generated was then used to identify species of Labisia pumila in herbal medicinal products, while HPLC was utilized to determine their quality. The findings through the synergistic approach (DNA barcode and HPLC) implemented in this study indicate the importance of both methods in providing the strong evidence required for the identification of true species and to examine the authenticity of such herbal medicinal products.
  5. Wan Zakaria WN, Loke KK, Zulkapli MM, Mohd Salleh F', Goh HH, Mohd Noor N
    Front Plant Sci, 2015;6:1229.
    PMID: 26793209 DOI: 10.3389/fpls.2015.01229
  6. Fadzil NF, Wagiran A, Mohd Salleh F, Abdullah S, Mohd Izham NH
    Genes (Basel), 2018 Aug 12;9(8).
    PMID: 30103564 DOI: 10.3390/genes9080408
    The present study demonstrated High Resolution Melting (HRM) analysis combined with DNA barcode (Bar-HRM) as a fast and highly sensitive technique for detecting adulterants in Eurycoma longifolia commercial herbal products. Targeting the DNA barcoding of the chloroplastic region-ribulose biphosphate carboxylase large chain (rbcL) and the nuclear ribosomal region- internal transcribed spacer 2 (ITS2), PCR amplification and HRM analysis using saturated Eva green dye as the source of fluorescence signals, was accomplished by employing a real-time cycler. The results were further validated by sequencing to identify unknown sequence from Genbank database and to generate phylogenetic tree using neighbour joint (NJ) analysis. Both of the DNA markers exhibited a distinguishable melting temperature and shape of the normalised curve between the reference and the adulterants. In the case of species identification, ITS2 was more successful in differentiating between species. Additionally, detection of admixture sample containing small traces of targeted E. longifolia DNA (w/v) can be detected as low as 5% for rbcL and less than 1% for ITS2, proving the sensitivity and versatility of the HRM analysis. In conclusion, the Bar-HRM analysis is a fast and reliable technique that can effectively detect adulterants in herbal products. Therefore, this will be beneficial for regulatory agencies in order to regulate food safety issues.
  7. Jahari PNS, Abdul Malik NF, Shamsir MS, Gilbert MTP, Mohd Salleh F
    Data Brief, 2020 Aug;31:105721.
    PMID: 32490085 DOI: 10.1016/j.dib.2020.105721
    The spotted seahorse, Hippocampus kuda population is exponentially decreasing globally due to habitat loss contributed by massive coastal urbanization as well as its large exploitation for Chinese herbal medicine. Genomic data would be highly useful to improve biomonitoring of seahorse populations in Malaysia via the usage of non-invasive approaches such as water environmental DNA. Here we report the first complete mitogenome of two H. kuda individuals originating from Malaysia, generated using BGISEQ-500RS sequencer. The lengths of both mitogenomes are 16,529bp, consisting of 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and a control region. The overall base composition was 32.46% for A, 29.40% for T, 14.73% for G and 23.41% for C with AT rich features (61.86%). The gene organization of Malaysian H. kuda were similar to that of most teleost species. A phylogenetic analysis of the genome against mtDNA data from other Hippocampus species showed that Malaysian H. kuda samples clustered with H. capensis, H. reidi and H. kuda. Notably however, analysis of the data using BLASTn revealed they had 99.18% similarity to H. capensis, and only 97.66% to H. kuda and H. reidi, which are all part of the unresolved H. kuda complex. The mitogenomes are deposited in Genbank under the accession number MT221436 (HK1) and MT221436 (HK2).
  8. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, Rashid MRA
    J Forensic Sci, 2023 Nov;68(6):2103-2115.
    PMID: 37646344 DOI: 10.1111/1556-4029.15370
    The onus of proof in criminal cases is beyond any reasonable doubt, and the issue on the lack of complete internal validation data can be manipulated when it comes to justifying the validity and reliability of the X-chromosomal short tandem repeats analysis for court representation. Therefore, this research evaluated the efficiency of the optimized 60% reduced volumes for polymerase chain reaction (PCR) amplification using the Qiagen Investigator® Argus X-12 QS Kit, as well as the capillary electrophoresis (CE) sample preparation for blood samples on Flinder's Technology Associates (FTA) cards. Good-quality DNA profile (3000-12,000 RFU) from the purified blood sample on FTA card (1.2 mm) were obtained using the optimized PCR (10.0 μL of PCR reaction volume and 21 cycles) and CE (9.0 μL Hi-Di™ Formamide and 0.3 μL DNA Size Standard 550 [BTO] and 27 s injection time) conditions. The analytical and stochastic thresholds were 100 and 200 RFU, respectively. Hence, the internal validation data supported the use of the optimized 60% reduced PCR amplification reaction volume of the Qiagen Investigator® Argus X-12 QS Kit as well as the CE sample preparation for producing reliable DNA profiles that comply with the quality assurance standards for forensic DNA testing laboratories, while optimizing the analytical cost.
  9. Saidon NA, Wagiran A, Samad AFA, Mohd Salleh F, Mohamed F, Jani J, et al.
    Genes (Basel), 2023 Mar 11;14(3).
    PMID: 36980969 DOI: 10.3390/genes14030697
    Nepentheceae, the most prominent carnivorous family in the Caryophyllales order, comprises the Nepenthes genus, which has modified leaf trap characteristics. Although most Nepenthes species have unique morphologies, their vegetative stages are identical, making identification based on morphology difficult. DNA barcoding is seen as a potential tool for plant identification, with small DNA segments amplified for species identification. In this study, three barcode loci; ribulose-bisphosphate carboxylase (rbcL), intergenic spacer 1 (ITS1) and intergenic spacer 2 (ITS2) and the usefulness of the ITS1 and ITS2 secondary structure for the molecular identification of Nepenthes species were investigated. An analysis of barcodes was conducted using BLASTn, pairwise genetic distance and diversity, followed by secondary structure prediction. The findings reveal that PCR and sequencing were both 100% successful. The present study showed the successful amplification of all targeted DNA barcodes at different sizes. Among the three barcodes, rbcL was the least efficient as a DNA barcode compared to ITS1 and ITS2. The ITS1 nucleotide analysis revealed that the ITS1 barcode had more variations compared to ITS2. The mean genetic distance (K2P) between them was higher for interspecies compared to intraspecies. The results showed that the DNA barcoding gap existed among Nepenthes species, and differences in the secondary structure distinguish the Nepenthes. The secondary structure generated in this study was found to successfully discriminate between the Nepenthes species, leading to enhanced resolutions.
  10. Jahari PNS, Mohd Azman S, Munian K, Ahmad Ruzman NH, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2021 Feb 11;6(2):502-504.
    PMID: 33628904 DOI: 10.1080/23802359.2021.1872433
    Two mitogenomes of long-tailed giant rat, Leopoldamys sabanus (Thomas, 1887), which belongs to the family Muridae were sequenced and assembled in this study. Both mitogenomes have a length of 15,973 bp and encode 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes and one control region. The circular molecule of L. sabanus has a typical vertebrate gene arrangement. Phylogenetic and BLASTn analysis using 10 Leopoldamys species mitogenomes revealed sequence variation occurred within species from different time zones. Along with the taxonomic issues, this suggests a landscape change might influence genetic connectivity.
  11. Jahari PNS, Mohd Azman S, Munian K, Zakaria NA, Omar MSS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2021 Jan 12;6(1):53-55.
    PMID: 33521264 DOI: 10.1080/23802359.2020.1846472
    We assembled the complete mitogenome of Cynopterus sphinx (Vahl, 1797) of the family Pteropodidae originating from Malaysia. The total mitogenome size was 16,710bp which consists of 37 genes (13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one control region). A phylogenetic and BLASTn result showed the mitogenome sequence in this study varies by nearly 7% (93.48% similarity) from the same species in Cambodia. The next closest match of BLASTn was at 92% similarity to the C. brachyotis. This suggests the species-complex in Cynopterus sp. has given rise to the genetic variability.
  12. Jahari PNS, Mohd Azman S, Munian K, M Fauzi NF, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2020 Sep 01;5(3):3262-3264.
    PMID: 33458132 DOI: 10.1080/23802359.2020.1812449
    The increasing interest in understanding the evolutionary relationship between members of the Pteropodidae family has been greatly aided by genomic data from the Old World fruit bats. Here we present the complete mitogenome of Geoffroy's rousette, Rousettus amplexicaudatus found in Peninsular Malaysia . The mitogenome constructed is 16,511bp in length containing 37 genes; 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a D-loop region. The overall base composition is estimated to be 32.28% for A, 25.64% for T, 14.09% for G and 27.98% for C, indicating a slightly AT rich feature (57.93%). A phylogenetic and BLASTn analysis against other available mitogenomes showed Malaysian R. amplexicaudatus matched 98% similarity to the same species in Cambodia and Vietnam. However, it differed considerably (92.53% similarity) with the same species in the Philippines. This suggests flexibility in Rousettus sp. with regards to adapting to mesic and dry habitats, ability for long-distance dispersal and remarkably precise lingual echolocation thus supporting its wide-range distribution and colonization. Further taxonomical and mitogenomic comparatives are required in resolving the evolutionary relationship between Rousettus spp.
  13. Jahari PNS, Mohd Azman S, Munian K, Ahmad Ruzman NH, Shamsir MS, Richter SR, et al.
    Mitochondrial DNA B Resour, 2020 Aug 26;5(3):3004-3006.
    PMID: 33458034 DOI: 10.1080/23802359.2020.1797583
    The mitogenome of a plantain squirrel, Callosciurus notatus, collected from Bukit Tarek Forest Reserve (Extension), Selangor, Malaysia was sequenced using BGISEQ-500RS technology. The 16,582 bp mitogenome consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region. A phylogenetic and BLASTn analysis against other available datasets showed that the mitogenome matched with 99.49% similarity to a previously published C. notatus mitogenome from Peninsular Malaysia. However, it also diverged by nearly 8% (92.24% match) from a second previously published mitogenome for the same species, sampled in East Kalimantan, Indonesia. This suggests a difference in landscape features between both localities might affect its genetic connectivity.
  14. Miga M, Yap YZ, Jahari PNS, Parimannan S, Rajandas H, Abu Bakar-Latiff M, et al.
    Mitochondrial DNA B Resour, 2023;8(1):167-171.
    PMID: 36733274 DOI: 10.1080/23802359.2023.2167476
    The Great Marquis or Bassarona dunya is a butterfly species commonly found in the tropical regions of Asia, America, and Africa. This butterfly is a member of the subfamily Limenitidinae and the classification within this subfamily has been unstable. Here, we report the first complete mitochondrial genome (mitogenome) of B. dunya sampled from Malaysia. The mitogenome is 15,242 bp long, comprising a set of 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and an A + T rich region. All PCGs were initiated by the typical ATN codon, except for COX1 which started with a CGA start codon. Nine PCGs were terminated with a TAA or TAG stop codon, while COX1, COX2, NAD4, and NAD5 ended with an incomplete T. The 12S and 16S rRNAs were 716 bp and 1269 bp in length, respectively. Phylogenetic analysis supported the placement of B. dunya within Limenitidinae with a high support value.
  15. Miga M, Jahari PNS, Parimannan S, Rajandas H, Latiff MAB, Jing Wei Y, et al.
    Mitochondrial DNA B Resour, 2023;8(2):292-296.
    PMID: 36845007 DOI: 10.1080/23802359.2023.2179355
    In the present study, the nearly complete mitochondrial genome of Euphaea ochracea was described and its phylogenetic position in the family Euphaeidae was analyzed. Here, we recovered 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs and a partial control region, resulting in a mitogenome length of 15,545bp. All protein-coding genes were initiated by the typical ATN codon except nad3 and nad1, which utilizes the TTG codon. Four protein-coding genes (cox1, cox2, cox3 and nad5) are terminated by an incomplete stop codon T, while others end with either a TAA or TAG codon. The intergenic spacer region, S5, is absent in this mitogenome, supporting the lack of this region as a specific character in damselflies. Phylogenetic analysis showed that the newly sequenced E. ochracea is phylogenetically closer to E. ornata with a high support value.
  16. Isaac P, Mutusamy P, Su Yin L, Jing Wei Y, Mohd Salleh F, Abu Bakar MALb, et al.
    PMID: 37933991 DOI: 10.1128/MRA.00680-23
    Lactococcus lactis is a beneficial lactic acid bacterium commonly studied for its probiotic properties and role in dairy production. Here, we present a complete genome of Lactococcus lactis D1_2, isolated from peat swamp forests. To discover the potential antimicrobial properties, the complete genome of the strain was sequenced and analyzed.
  17. Badrulhisham NS, Solehin SN, Han MG, Jahari PNS, Mohd Salleh F, Mohamed Rehan A, et al.
    Data Brief, 2023 Apr;47:108968.
    PMID: 36860405 DOI: 10.1016/j.dib.2023.108968
    White threads fish Holothuria (Mertensiothuria) leucospilota (Brandt, 1835) or locally known as bat puntil is a neritic marine organism, and it is widely distributed in Indo Pacific. They serve many important roles in ecosystem services and were discovered to contain many bioactive compounds that are useful for medicinal value. However, despite its abundance in Malaysian seawater, there is still a lack of records on H. leucospilota mitochondrial genome (mitogenome) from Malaysia. The mitogenome of H. leucospilota originating from Sedili Kechil, Kota Tinggi, Johor, Malaysia, is presented here. Whole genome sequencing was successfully sequenced using Illumina NovaSEQ6000 sequencing system and the mitochondrial-derived contigs were assembled using de novo approach. The size of the mitogenome is 15,982 bp which consists of 13 protein-coding genes (PCGs), 21 transfer RNAs, and 2 ribosomal RNAs. The overall composition of nucleotide bases was estimated to be 25.8% for T, 25.9% for C, 31.8% for A and 16.5% for G (with A + T content of 57.6%). Maximum likelihood phylogenetic tree analysis revealed that the mitochondrial Protein-Coding Genes (PCGs) sequence data from our H. leucospilota is closely related to H. leucospilota from accession number MK940237 and H. leucospilota from accession number MN594790, followed by H. leucospilota from accession number MN276190, forming sister group with H. hilla (MN163001), known as Tiger tail sea cucumber. The mitogenome of H. leucospilota will be valuable for genetic research, mitogenome reference and future conservation management of sea cucumber in Malaysia. The mitogenome data of H. leucospilota from Sedili Kechil, Kota Tinggi, Johor, Malaysia is available in the GenBank database repository with accession number ON584426.
  18. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, A Rashid MR, et al.
    Leg Med (Tokyo), 2024 Feb 03;68:102416.
    PMID: 38325234 DOI: 10.1016/j.legalmed.2024.102416
    X-chromosome short tandem repeats (X-STRs) are useful for human identification, especially in complex kinship scenarios. Since forensic statistical parameters vary among populations and the X-STRs population data for the diverse population of Peninsular Malaysia's are unavailable, this attempt for Indians (n = 201) appears forensically relevant to support the 12 X-STRs markers' evidential value for human identification in Malaysia. The Qiagen Investigator® Argus X-12 QS kit showed that DXS10135 was the most polymorphic locus with high genetic diversity, polymorphism information richness, heterozygosity, and exclusion power. Based on allele frequencies, the strength of discrimination and mean exclusion chance (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) values for the Malaysian Indians were ≥0.999997790686228. As for haplotype frequencies, the overall discrimination power and mean exclusion probability (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) were ≥0.9999984801951. The genetic distance, neighbor-joining phylogenetic tree, and principal component analysis also supported the evidential value of the 12 X-STRs markers for forensic practical caseworks in Malaysia.
  19. Mohd Salleh F, Ramos-Madrigal J, Peñaloza F, Liu S, Mikkel-Holger SS, Riddhi PP, et al.
    Gigascience, 2017 08 01;6(8):1-8.
    PMID: 28873965 DOI: 10.1093/gigascience/gix053
    Southeast (SE) Asia is 1 of the most biodiverse regions in the world, and it holds approximately 20% of all mammal species. Despite this, the majority of SE Asia's genetic diversity is still poorly characterized. The growing interest in using environmental DNA to assess and monitor SE Asian species, in particular threatened mammals-has created the urgent need to expand the available reference database of mitochondrial barcode and complete mitogenome sequences. We have partially addressed this need by generating 72 new mitogenome sequences reconstructed from DNA isolated from a range of historical and modern tissue samples. Approximately 55 gigabases of raw sequence were generated. From this data, we assembled 72 complete mitogenome sequences, with an average depth of coverage of ×102.9 and ×55.2 for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Our new database of 52 taxa will strongly enhance the utility of environmental DNA approaches for monitoring mammals in SE Asia as it greatly increases the likelihoods that identification of metabarcoding sequencing reads can be assigned to reference sequences. This magnifies the confidence in species detections and thus allows more robust surveys and monitoring programmes of SE Asia's threatened mammal biodiversity. The extensive collections of historical samples from SE Asia in western and SE Asian museums should serve as additional valuable material to further enrich this reference database.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links