Displaying all 7 publications

Abstract:
Sort:
  1. Baharin SNA, Muhamad Sarih N, Mohamad S
    Polymers (Basel), 2016 Apr 28;8(5).
    PMID: 30979266 DOI: 10.3390/polym8050117
    Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (P3TArH) was successfully synthesized and coated on the surface of Fe₃O₄ magnetic nanoparticles (MNPs). The nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, analyzer transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). P3TArH-coated MNPs (MNP@P3TArH) showed higher capabilities for the extraction of commonly-used phthalates and were optimized for the magnetic-solid phase extraction (MSPE) of environmental samples. Separation and determination of the extracted phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate (DCP), di-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), were conducted by a gas chromatography-flame ionization detector (GC-FID). The best working conditions were as follows; sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent volumes, 10 min desorption time, 10-mg adsorbent dosage, 20-mL sample loading volume and 15 g·L-1 concentration of NaCl. Under the optimized conditions, the analytical performances were determined with a linear range of 0.1⁻50 µg·L-1 and a limit of detection at 0.08⁻0.468 µg·L-1 for all of the analytes studied. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 3.7⁻4.9 and 3.0⁻5.0, respectively. The steadiness and reusability studies suggested that the MNP@P3TArH could be used up to five cycles. The proposed method was executed for the analysis of real water samples, namely commercial bottled mineral water and bottled fresh milk, whereby recoveries in the range of 68%⁻101% and RSD% lower than 7.7 were attained.
  2. Adamu AA, Muhamad Sarih N, Gan SN
    R Soc Open Sci, 2021 Apr 14;8(4):201087.
    PMID: 33996112 DOI: 10.1098/rsos.201087
    Polyols of palm olein/polyethylene terephthalate (PET) were synthesized by means of incorporating recycled PET from waste drinking bottles in different proportions into palm olein alkyd in the presence of ethylene glycol. The polyols were characterized by FTIR, and theirs hydroxyl value (OHV), acid value (AV) and viscosity were determined. The formulation of the polyurethane coating was carried out by dissolving the polyol in mixed solvent of cyclohexanone/tetrahydrofuran (THF) (4 : 1) followed by reacting 1 hydroxyl equivalent of the polyol with 1.2 equivalents of methylene diphenyldiisocyanate and 0.05% dibutyltin dilaurate (DBTDL) catalyst. The coating cured through the cross-linking reactions between hydroxyl and isocyanate groups. The formation of urethane linkages was established by FTIR spectroscopy. The set films were characterized by thermal analysis. To study their anticorrosion properties, polarization measurements and EIS in 3.5% NaCl solution were determined. The coatings displayed good thermal stability and anticorrosion properties which were supported by XRD analysis. The PU7 coating, with the highest proportion of PET (up to 15% w/w), displayed significantly improved thermal stability and anticorrosion properties. It is evident that the performance of the polyurethane (PU) coatings could be enhanced by the incorporation of PET.
  3. Muhamad Sarih N, Myers P, Slater A, Slater B, Abdullah Z, Tajuddin HA, et al.
    Sci Rep, 2019 08 14;9(1):11834.
    PMID: 31413269 DOI: 10.1038/s41598-019-47847-5
    Three fluorescent organic compounds-furocoumarin (FC), dansyl aniline (DA), and 7-hydroxycoumarin-3-carboxylic acid (CC)-are mixed to produce almost pure white light emission (WLE). This novel mixture is immobilised in silica aerogel and applied as a coating to a UV LED to demonstrate its applicability as a low-cost, organic coating for WLE via simultaneous emission. In ethanol solution and when immobilised in silica aerogel, the mixture exhibits a Commission Internationale d'Eclairage (CIE) chromaticity index of (0.27, 0.33). It was observed that a broadband and simultaneous emission involving coumarin carboxylic acid, furocoumarin and dansyl aniline played a vital role in obtaining a CIE index close to that of pure white light.
  4. Farhan N, Rageh Al-Maleki A, Ataei S, Muhamad Sarih N, Yahya R
    Bioorg Chem, 2023 Jun;135:106511.
    PMID: 37027951 DOI: 10.1016/j.bioorg.2023.106511
    Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 μg/mL during eight h of FHA and 0.3 μg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.
  5. Mukheem A, Shahabuddin S, Akbar N, Miskon A, Muhamad Sarih N, Sudesh K, et al.
    Nanomaterials (Basel), 2019 Apr 21;9(4).
    PMID: 31010071 DOI: 10.3390/nano9040645
    The present research focused on the fabrication of biocompatible polyhydroxyalkanoate, chitosan, and hexagonal boron nitride incorporated (PHA/Ch-hBN) nanocomposites through a simple solvent casting technique. The fabricated nanocomposites were comprehensively characterized by Fourier transform infrared spectroscope (FT-IR), field emission scanning electroscope (FESEM), and elemental mapping and thermogravimetric analysis (TGA). The antibacterial activity of nanocomposites were investigated through time-kill method against multi drug resistant (MDR) microbes such as methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) K1 strains. In addition, nanocomposites have examined for their host cytotoxicity abilities using a Lactate dehydrogenase (LDH) assay against spontaneously immortalized human keratinocytes (HaCaT) cell lines. The results demonstrated highly significant antibacterial activity against MDR organisms and also significant cell viability as compared to the positive control. The fabricated PHA/Ch-hBN nanocomposite demonstrated effective antimicrobial and biocompatibility properties that would feasibly suit antibacterial and biomedical applications.
  6. Banjar MF, Joynal Abedin FN, Fizal ANS, Muhamad Sarih N, Hossain MS, Osman H, et al.
    Polymers (Basel), 2023 Nov 29;15(23).
    PMID: 38232004 DOI: 10.3390/polym15234565
    Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm2 scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links