Displaying all 4 publications

Abstract:
Sort:
  1. Satyanarayana N, Chinni SV, Gobinath R, Sunitha P, Uma Sankar A, Muthuvenkatachalam BS
    Front Nutr, 2022;9:987552.
    PMID: 36386935 DOI: 10.3389/fnut.2022.987552
    Background: Solanum torvum Swartz, a medicinal plant belonging to the family Solanaceae, is an important medicinal plant widely distributed throughout the world and used as medicine to treat diabetes, hypertension, tooth decay, and reproductive problems in traditional systems of medicine around the world including Malaysia. The objective of this study was to investigate hypoglycemic, antilipidemic, and hepatoprotective activities, histopathology of the pancreas, and specific glucose regulating gene expression of the ethanolic extract of S. torvum fruit in streptozotocin-induced diabetic Sprague-Dawley rats.

    Materials and methods: Acute toxicity study was done according to OECD-423 guidelines. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg) in male Sprague-Dawley rats. Experimental diabetic rats were divided into six different groups; normal, diabetic control, and glibenclamide at 6 mg/kg body weight, and the other three groups of animals were treated with oral administration of ethanolic extract of S. torvum fruit at 120, 160, and 200 mg/kg for 28 days. The effect of ethanolic extract of S. torvum fruit on body weight, blood glucose, lipid profile, liver enzymes, histopathology of pancreas, and gene expression of glucose transporter 2 (slc2a2), and phosphoenolpyruvate carboxykinase (PCK1) was determined by RT-PCR.

    Results: Acute toxicity studies showed LD50 of ethanolic extract of S. torvum fruit to be at the dose of 1600 mg/kg body weight. Blood glucose, total cholesterol, triglycerides, low-density lipoproteins, very low-density lipoproteins, serum alanine aminotransferase, and aspartate aminotransferase were significantly reduced, whereas high-density lipoproteins were significantly increased in S. torvum fruit (200 mg/kg)-treated rats. Histopathological study of the pancreas showed an increase in number, size, and regeneration of β-cell of islets of Langerhans. Gene expression studies revealed the lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control.

    Conclusion: Ethanolic extract of S. torvum fruits showed hypoglycemic, hypolipidemic, and hepatoprotective activity in streptozocin-induced diabetic rats. Histopathological studies revealed regeneration of β cells of islets of Langerhans. Gene expression studies indicated lower expression of slc2a2 and PCK1 in treated animals when compared to diabetic control, indicating that the treated animals prefer the gluconeogenesis pathway.

  2. Shobana N, Prakash P, Samrot AV, Jane Cypriyana PJ, Kajal P, Sathiyasree M, et al.
    Molecules, 2022 Jun 09;27(12).
    PMID: 35744846 DOI: 10.3390/molecules27123720
    Plant gums are bio-organic substances that are derived from the barks of trees. They are biodegradable and non-adverse complex polysaccharides that have been gaining usage in recent years due to a number of advantages they contribute to various applications. In this study, gum was collected from Moringa oleifera and Azadirachta indica trees, then dried and powdered. Characterizations of gum polysaccharides were performed using TLC, GC-MS, NMR, etc., and sugar molecules such as glucose and xylose were found to be present. Effects of the gums on Abelmoschus esculentus growth were observed through root growth, shoot growth, and biomass content. The exposure of the seeds to the plant gums led to bio stimulation in the growth of the plants. Poor quality soil was exposed to the gum polysaccharide, where the polysaccharide was found to improve soil quality, which was observed through soil analysis and SEM analysis of soil porosity and structure. Furthermore, the plant gums were also found to have bio-pesticidal activity against mealybugs, which showed certain interstitial damage evident through histopathological analysis.
  3. Alsaeedi HA, Lam C, Koh AE, Teh SW, Mok PL, Higuchi A, et al.
    J. Photochem. Photobiol. B, Biol., 2020 Jan;203:111727.
    PMID: 31862637 DOI: 10.1016/j.jphotobiol.2019.111727
    Blindness and vision impairment are caused by irremediable retinal degeneration in affected individuals worldwide. Cell therapy for a retinal replacement can potentially rescue their vision, specifically for those who lost the light sensing photoreceptors in the eye. As such, well-characterized retinal cells are required for the replacement purposes. Stem cell-based therapy in photoreceptor and retinal pigment epithelium transplantation is well received, however, the drawbacks of retinal transplantation is the limited clinical protocols development, insufficient number of transplanted cells for recovery, the selection of potential stem cell sources that can be differentiated into the target cells, and the ability of cells to migrate to the host tissue. Dental pulp stem cells (DPSC) belong to a subset of mesenchymal stem cells, and are recently being studied due to its high capability of differentiating into cells of the neuronal lineage. In this review, we look into the potential uses of DPSC in treating retinal degeneration, and also the current data supporting its application.
  4. Alsaeedi HA, Koh AE, Lam C, Rashid MBA, Harun MHN, Saleh MFBM, et al.
    J. Photochem. Photobiol. B, Biol., 2019 Sep;198:111561.
    PMID: 31352000 DOI: 10.1016/j.jphotobiol.2019.111561
    Blindness and vision loss contribute to irreversible retinal degeneration, and cellular therapy for retinal cell replacement has the potential to treat individuals who have lost light sensitive photoreceptors in the retina. Retinal cells are well characterized in function, and are a subject of interest in cellular replacement therapy of photoreceptors and the retinal pigment epithelium. However, retinal cell transplantation is limited by various factors, including the choice of potential stem cell source that can show variability in plasticity as well as host tissue integration. Dental pulp is one such source that contains an abundance of stem cells. In this study we used dental pulp-derived mesenchymal stem cells (DPSCs) to mitigate sodium iodate (NaIO3) insult in a rat model of retinal degeneration. Sprague-Dawley rats were first given an intravitreal injection of 3 × 105 DPSCs as well as a single systemic administration of NaIO3 (40 mg/kg). Electroretinography (ERG) was performed for the next two months and was followed-up by histological analysis. The ERG recordings showed protection of DPSC-treated retinas within 4 weeks, which was statistically significant (* P ≤ .05) compared to the control. Retinal thickness of the control was also found to be thinner (*** P ≤ .001). The DPSCs were found integrated in the photoreceptor layer through immunohistochemical staining. Our findings showed that DPSCs have the potential to moderate retinal degeneration. In conclusion, DPSCs are a potential source of stem cells in the field of eye stem cell therapy due to its protective effects against retinal degeneration.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links