METHODS: CT scans of 50 lower limbs were analyzed. Key anatomical landmarks such as the medial epicondyle (ME), lateral epicondyle, and transepicondylar width (TEW) were determined on 3D models constructed from the CT images. Best-fit planes placed on the most distal and posterior loci of points on the femoral condyles were used to define the distal and posterior joint lines, respectively. Statistical analysis was performed to determine the relationships between the anatomical landmarks and the distal and posterior joint lines.
RESULTS: There was a strong correlation between the distance from the ME to the distal joint line of the medial condyle (MEDC) and the distance from the ME to the posterior joint line of the medial condyle (MEPC) (p
METHODS: Fifty computed tomography scans of nonarthritic knees were evaluated using three-dimensional image processing software. Four distal femoral rotational axes were determined in the axial plane: the transepicondylar axis (TEA), transcondylar axis (TCA), posterior condylar axis (PCA), and a line perpendicular to Whiteside's anterior-posterior axis. Then, angles were measured relative to the TEA. Tibial joint line obliquity was measured as the angle between the proximal tibial plane and a line perpendicular to the axis of the tibia.
RESULTS: There was a strong positive correlation between PCA-TEA and tibial joint line obliquity (r = 0.68, P < .001) as well as TCA-TEA and tibial joint line obliquity (r = 0.69, P < .001). In addition, the tibial joint line obliquity and TCA-TEA angles were similar, 3.7° ± 2.2° (mean ± standard deviation) and 3.5° ± 1.7°, respectively (mean difference, 0.2° ± 0.2°; P = .369).
CONCLUSION: Both PCA-TEA and TCA-TEA strongly correlated with proximal tibial joint line obliquity indicating a relationship between distal femoral rotational geometry and proximal tibial inclination. These findings could imply that the native knee in flexion attempts to balance the collateral ligaments toward a rectangular flexion space. A higher tibial varus inclination is matched with a more internally rotated distal femur relative to the TEA.
OBJECTIVE: We aimed to evaluate the effects of HP eradication on PD symptoms.
METHODS: In this parallel-group, double-blind, randomized placebo-controlled, single-center trial, patients with PD with positive HP urea breath test and serology were block randomized (1:1) to receive standard eradication triple therapy or identically appearing placebo capsules for 1 week. Prespecified motor (International Parkinson and Movement Disorder Society Unified PD Rating Scale [MDS-UPDRS], timed tests, and home-based wearable sensor measurements), nonmotor (Leeds Dyspepsia Questionnaire and Montreal Cognitive Assessment), and quality-of-life (Parkinson's Disease Questionnaire-39) outcome measures were assessed at weeks 6, 12, 24, and 52. The primary outcome was the baseline-to-week 12 change in ON medication MDS-UPDRS motor scores. Lactulose-hydrogen breath testing for concomitant small intestinal bacterial overgrowth was performed at baseline and repeated at week 24, together with the urea breath test.
RESULTS: A total of 310 patients were screened for eligibility and 80 were randomly assigned, of whom 67 were included in the full-analysis set (32 treatment group patients, 35 placebo patients). HP eradication did not improve MDS-UPDRS motor scores at week 12 (mean difference 2.6 points in favor of placebo, 95% confidence interval: -0.4 to 5.6, P = 0.089). There was no significant improvement in any motor, nonmotor, or quality-of-life outcome at weeks 12 and 52. Both the full-analysis and per-protocol analyses (based on eradication status) supported these conclusions. Small intestinal bacterial overgrowth status did not influence treatment results.
CONCLUSIONS: HP eradication does not improve clinical outcomes in PD, suggesting that there is no justification for routine HP screening or eradication with the goal of improving PD symptoms. © 2020 International Parkinson and Movement Disorder Society.