MATERIALS AND METHODS: Several electronic databases such as Google Scholar, PubMed, Science Direct, and Web of Science were systematically searched for studies published until July 2015.
RESULTS: EMG can be used in both diagnosis and treatment purpose to record neuromuscular activity. In dentistry, we can utilize EMG to evaluate muscular activity in function such as chewing and biting or parafunctional activities such as clenching and bruxism. In case of TMJ and myofascial pain disorders, EMG widely is used in the last few years.
CONCLUSIONS: EMG is one of biometric tests that occur in the modern evidence-based dentistry practice.
Methods: A total of eighteen (18) malocclusion patients were identified. Malocclusion patients were subdivided into 3 groups based on the bracket selection (conventional, self-ligating, and ceramic bracket) with 6 patients for each group. sEMG of muscles were done using a two-channel electromyography device, where pregelled and self-adhesive electrodes (bilateral) were applied. Chewing and clenching of masseter and temporalis muscle activity were recorded for 20 s pre and 6 months of orthodontic treatment using sEMG (frequency 60 Hz). The data were analysed by using repeated measures ANOVA in IBM SPSS Statistics Version 24.0.
Results: Chewing and clenching for masseter muscle showed no significant difference (P > 0.05) in sEMG activity of three types of the brackets. However, for temporalis muscle, there was a significant difference found in sEMG activity during chewing (P < 0.05) and clenching (P < 0.05) between these three brackets.
Conclusion: The activity of temporalis muscle showed significant changes in chewing and clenching, where the conventional group demonstrated better muscle activity pre and at six months of fixed appliances.
MATERIALS AND METHODS: The overjet (measured clinically) and electromyographical activity (rest, chew, post chew rest, clench and post clench rest) of the masseter and temporalis muscle of class II malocclusion patient were assessed in 18 patients (3 males and 15 females) from the School of Dental Science, Hospital University Sains Malaysia.
RESULTS: The results were compared by simple linear regression test to evaluate the association between overjet and muscle activity in different genders. Class II malocclusion patients with increased overjet group showed significant association with masseter muscle activity on chewing stage (P = 0.005, F = 6.081 and adj-R2 = 0.473). Left temporalis muscle in class II malocclusion showed a significant linear association (P = 0.014, F = 0.812 and adj-R2= -0.034) with gender during clench.
CONCLUSION: In conclusion, class II malocclusion patient with increased overjet can affect masticatory muscle function and as well as clench force may differ in gender.