Displaying all 3 publications

Abstract:
Sort:
  1. Nur AM, Nur AA, Lau WH
    Zootaxa, 2015;3986(2):243-8.
    PMID: 26250185 DOI: 10.11646/zootaxa.3986.2.8
    Here we provide an illustrated key to lepidopteran larvae that occur as pests on rice (Oryza) in Malaysia. We are unaware of a published key for this region for this vital commercial crop, and hence provide one based on easily observable features that could be useful for identification, early detection, and pest management by specialists and non-specialists alike (see discussion in Mukerji & Singh 1951, Sri et al. 2010, Timm et al. 2007, Tillmon et al. 2000, Wagener et al. 2004).
  2. Normala J, Okomoda VT, Mohd AA, Nur AA, Abol-Munafi AB, Md Sheriff S
    Vet Sci, 2021 May 04;8(5).
    PMID: 34064306 DOI: 10.3390/vetsci8050075
    This study was designed to examine the use of RAPD markers in discriminating triploid and diploid African catfish Clarias gariepinus (Burchell, 1822). Following a routine technique, triploidy was induced by cold shock and confirm by erythrocyte measurement in C. gariepinus. Thereafter, 80 RAPD markers were screened; out of which, three showed the highest percentage of polymorphism (i.e., OPB 16 = 71.43%; OPC 14 = 61.9%; OPD 12 = 75%). The results obtained showed genotype differences between triploid and diploid without overlapping. However, the development of a Sequence Characterized Amplified Region (SCAR) marker was not achievable because progenies of triploid and diploid C. gariepinus could not be differentiated based on a specific fragment. Consequently, the genetic distance showed high similarities for both treatments and the UPGMA-generated dendrogram could not separate the treatments into two distinct clusters. It was concluded that RAPD makers cannot be used to separate the ploidy status of fishes.
  3. Okomoda VT, Nurul ANA, Danish-Daniel AM, Oladimeji AS, Abol-Munafi AB, Alabi KI, et al.
    Data Brief, 2020 Oct;32:106120.
    PMID: 32817873 DOI: 10.1016/j.dib.2020.106120
    The Labroides dimidiatus is known as the "doctor fish" because of its role in removing parasites and infectious pathogens from the body of other fishes. This important role played both in wild and captive conditions could represent a novel form of parasitic transmission process mediated by the cleaning activity of the fish. Yet, there is a paucity of data on the microflora associated with this fish which is important for tracking disease infection and generally monitoring the health status of the fish. This article, therefore, represents the first dataset for the microbiota composition of wild and captive L. dimidiatus. Wild fish samples and carriage water were gotten in Terengganu Malaysia around the corals of the Karah Island. The captive sample, however, was obtained from well-known ornamental fish suppliers in Terengganu Malaysia. Thereafter, bacteria present on the skin, in the stomach and the aquarium water were enumerated using culture-independent approaches and Next Generation Sequencing (NGS) technology. Data obtained from the three metagenomic libraries using NGS analysis gave 1,426,740 amplicon sequence reads which are composed of 508 operational taxonomic units (OTUs) for wild samples and 3,238,564 valid reads and 828 OTUs for captive samples. All sequence reads were deposited in the GeneBank (Accession numbers SAMN14260247, SAMN14260248, SAMN14260249, SAMN14260250, SAMN14260251, and SAMN14260252). The dataset presented is associated with the research article "16S rDNA-Based Metagenomic Analysis of Microbial Communities Associated with Wild Labroides dimidiatus From Karah Island, Terengganu, Malaysia" [1]. The microbiota data presented in this article can be used to monitor the health and wellbeing of the ornamental fish, especially under captivity, hence preventing possible cross-infection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links