Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods.
Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult.
Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.
OBSERVATIONS: Thirty-eight previous parasite studies in rodents conducted in Malaysia were reviewed, and 44 ectoparasites species and 58 endoparasites species across 19 rodent species were revealed. Six ectoparasite and eight endoparasite species were identified as zoonotic among these parasites. Morphological identification of parasite species typically succeeded only at the genus level because of their identical morphological characteristics. However, these studies used a molecular approach to identify parasites at the species level using species-specific primers. The pathological findings of various organs of infected rodents were also summarized, including gross and histological lesions exhibited by parasites.
CONCLUSIONS AND RELEVANCE: This review highlights the list of parasites infecting rodents in Malaysia, provides information on the molecular and pathological findings from previous studies, and identifies some of the limitations and knowledge gaps that suggest future research to address the issues, including the paucity of information on blood parasites, molecular, and histopathological studies of parasites in rodents.
Materials and Methods: Convenience sampling was performed in 20 cats from the Gasing Veterinary Hospital in Selangor. Plasma and saliva samples were collected from 15 clinically ill cats and 5 healthy cats subjected to one-step reverse transcription-polymerase chain reaction with primers targeting a highly conserved gene of U3-LTR-gag.
Results: Two clinically ill cats' plasma and saliva samples tested positive for FeLV RNA. Partial nucleotide sequencing and phylogenetic analysis revealed that the current isolates were 94-99% homologous to the previous Malaysian and Japanese FeLV isolates.
Conclusion: Current FeLV isolates from this study displayed higher similarity with the previous Malaysian isolates, signifying that a similar FeLV strain circulated among the cat population in Selangor.