Displaying all 12 publications

Abstract:
Sort:
  1. Oyewusi HA, Wahab RA, Huyop F
    Mar Pollut Bull, 2020 Nov;160:111603.
    PMID: 32919122 DOI: 10.1016/j.marpolbul.2020.111603
    This review aims to briefly describe the potential role of dehalogenase-producing halophilic bacteria in decontamination of organohalide pollutants. Hypersaline habitats pose challenges to life because of low water activity (water content) and is considered as the largest and ultimate sink for pollutants due to naturally and anthropogenic activities in which a substantial amount of ecological contaminants are organohalides. Several such environments appear to host and support substantial diversity of extremely halophilic and halotolerant bacteria as well as halophilic archaea. Biodegradation of several toxic inorganic and organic compounds in both aerobic and anaerobic conditions are carried out by halophilic microbes. Therefore, remediation of polluted marine/hypersaline environments are the main scorching issues in the field of biotechnology. Although many microbial species are reported as effective pollutants degrader, but little has been isolated from marine/hypersaline environments. Therefore, more novel microbial species with dehalogenase-producing ability are still desired.
  2. Oyewusi HA, Wahab RA, Huyop F
    Mol Biol Rep, 2021 Mar;48(3):2687-2701.
    PMID: 33650078 DOI: 10.1007/s11033-021-06239-7
    An integral approach to decoding both culturable and uncultured microorganisms' metabolic activity involves the whole genome sequencing (WGS) of individual/complex microbial communities. WGS of culturable microbes, amplicon sequencing, metagenomics, and single-cell genome analysis are selective techniques integrating genetic information and biochemical mechanisms. These approaches transform microbial biotechnology into a quick and high-throughput culture-independent evaluation and exploit pollutant-degrading microbes. They are windows into enzyme regulatory bioremediation pathways (i.e., dehalogenase) and the complete bioremediation process of organohalide pollutants. While the genome sequencing technique is gaining the scientific community's interest, it is still in its infancy in the field of pollutant bioremediation. The techniques are becoming increasingly helpful in unraveling and predicting the enzyme structure and explore metabolic and biodegradation capabilities.
  3. Oyewusi HA, Huyop F, Wahab RA
    J Biomol Struct Dyn, 2020 Oct 23.
    PMID: 33094694 DOI: 10.1080/07391102.2020.1835727
    The high dependency and surplus use of agrochemical products have liberated enormous quantities of toxic halogenated pollutants into the environment and threaten the well-being of humankind. Herein, this study performed molecular docking, molecular dynamic (MD) simulations, molecular mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis, to identify the order of which the enzyme degrades different substrates, haloacids, haloacetate and chlorpyrifos. The study discovered that the DehH2 favored the degradation of haloacids and haloacetates (-3.3 - 4.6 kcal/mol) and formed three hydrogen bonds with Asp125, Arg201 and Lys202. Despite the inconclusive molecular docking result, chlorpyrifos was consistently shown to be the least favored substrate of the DehH2 in MD simulations and MM-PBSA calculations. Results of MD simulations revealed the DehH2-haloacid- (RMSD 0.15 - 0.25 nm) and DehH2-haloacetates (RMSF 0.05 - 0.25 nm) were more stable, with the DehH2-L-2CP complex being the most stable while the least was the DehH2-chlorpyrifos (RMSD 0.295 nm; RMSF 0.05 - 0.59 nm). The Molecular Mechanics Poisson-Boltzmann Surface Area calculations showed the DehH2-L-2CP complex (-24.27 kcal/mol) having the lowest binding energy followed by DehH2-MCA (-22.78 kcal/mol), DehH2-D-2CP (-21.82 kcal/mol), DehH2-3CP (-21.11 kcal/mol), DehH2-2,2-DCP (-18.34 kcal/mol), DehH2-2,3-DCP (-8.34 kcal/mol), DehH2-TCA (-7.62 kcal/mol), while chlorpyrifos was unable to spontaneously bind to DehH2 (+127.16 kcal/mol). In a nutshell, the findings of this study offer valuable insights into the rational tailoring of the DehH2 for expanding its substrate specificity and catalytic activity in the near future.Communicated by Ramaswamy H. Sarma.
  4. Oyewusi HA, Huyop F, Wahab RA, Hamid AAA
    J Biomol Struct Dyn, 2022;40(19):9332-9346.
    PMID: 34014147 DOI: 10.1080/07391102.2021.1927846
    Increased scientific interest has led to the rise in biotechnological uses of halophilic and halotolerant microbes for hypersaline wastewater bioremediation. Hence, this study performed molecular docking, molecular dynamic (MD) simulations, and validation by Molecular Mechanic Poisson-Boltzmann Surface Area (MM-PBSA) calculations on the DehH2 from Bacillus thuringiensis H2. We aimed to identify the interactions of DehH2 with substrates haloacids, haloacetates, and chlorpyrifos under extreme salinity (35% NaCl). MD simulations revealed that DehH2 preferentially degraded haloacids and haloacetates (-6.3 to -4.7 kcal/mol) by forming three or four hydrogen bonds to the catalytic triad, Asp125, Arg201, and Lys202. Conversely, chlorpyrifos was the least preferred substrate in both MD simulations and MM-PBSA calculations. MD simulation results ranked the DehH2-L-2CP complex (RMSD □0.125-0.23 nm) as the most stable while the least was the DehH2-chlorpyrifos complex (RMSD 0.32 nm; RMSF 0.0 - 0.29). The order of stability was as follows: DehH2-L-2CP > DehH2-MCA > DehH2-D-2CP > DehH2-3CP > DehH2-2,2-DCP > DehH2-2,3-DCP > DehH2-TCA > DehH2-chlorpyrifos. The MM-PBSA calculations further affirmed the DehH2-L-2CP complex's highest stability with the lowest binding energy of -45.14 kcal/mol, followed closely by DehH2-MCA (-41.21 kcal/mol), DehH2-D-2CP (-31.59 kcal/mol), DehH2-3CP (-30.75 kcal/mol), DehH2-2,2- DCP (-29.72 kcal/mol), DehH2-2,3-DCP (-22.20 kcal/mol) and DehH2-TCA (-18.46 kcal/mol). The positive binding energy of the DehH2-chlorpyrifos complex (+180.57 kcal/mol) proved the enzyme's non-preference for the substrate. The results ultimately illustrated the unique specificity of the DehH2 to degrade the above-said pollutants under a hypersaline condition.Communicated by Ramaswamy H. Sarma.
  5. Oyewusi HA, Akinyede KA, Abdul Wahab R, Huyop F
    J Biomol Struct Dyn, 2023 Jan;41(1):319-335.
    PMID: 34854349 DOI: 10.1080/07391102.2021.2006085
    Microbial-assisted removal of natural or synthetic pollutants is the prevailing green, low-cost technology to treat polluted environments. However, the challenge with enzyme-assisted bioremediation is the laborious nature of dehalogenase-producing microorganisms' bioprospecting. This bottleneck could be circumvented by in-silico analysis of certain microorganisms' whole-genome sequences to predict their protein functions and enzyme versatility for improved biotechnological applications. Herein, this study performed structural analysis on a dehalogenase (DehHsAAD6) from the genome of Halomonas smyrnensis AAD6 by molecular docking and molecular dynamic (MD) simulations. Other bioinformatics tools were also employed to identify substrate preference (haloacids and haloacetates) of the DehHsAAD6. The DehHsAAD6 preferentially degraded haloacids and haloacetates (-3.2-4.8 kcal/mol) and which formed three hydrogen bonds with Tyr12, Lys46, and Asp182. MD simulations data revealed the higher stability of DehHsAAD6-haloacid- (RMSD 0.22-0.3 nm) and DehHsAAD6-haloacetates (RMSF 0.05-0.14 nm) complexes, with the DehHsAAD6-L-2CP complex being the most stable. The detail of molecular docking calculations ranked complexes with the lowest binding free energies as: DehHsAAD6-L-2CP complex (-4.8 kcal/mol) = DehHsAAD6-MCA (-4.8 kcal/mol) < DehHsAAD6-TCA (-4.5 kcal/mol) < DehHsAAD6-2,3-DCP (-4.1 kcal/mol) < DehHsAAD6-D-2CP (-3.9 kcal/mol) < DehHsAAD6-2,2-DCP (-3.5 kcal/mol) < DehHsAAD6-3CP (-3.2 kcal/mol). In a nutshell, the study findings offer valuable perceptions into the elucidation of possible reaction mechanisms of dehalogenases for extended substrate specificity and higher catalytic activity.Communicated by Ramaswamy H. Sarma.
  6. Akinyede KA, Oyewusi HA, Hughes GD, Ekpo OE, Oguntibeju OO
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011387 DOI: 10.3390/molecules27010155
    Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = -7.2 to -9.6 kcal/mol (compared with acarbose ΔG = -6.1 kcal/mol) for α-amylase, and ΔG = -7.3 to -9.0 kcal/mol (compared with acarbose ΔG = -6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.
  7. Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R
    Sci Rep, 2021 10 21;11(1):20851.
    PMID: 34675286 DOI: 10.1038/s41598-021-00409-0
    Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
  8. Tze Lin K, Mahat NA, Azman AR, Wahab RA, Oyewusi HA, Abdul Hamid AA
    J Biomol Struct Dyn, 2023 Mar 07.
    PMID: 36880661 DOI: 10.1080/07391102.2023.2186709
    Being commonly found at crime scenes, fingerprints are crucial for human identification, attributable to their uniqueness, persistence and systematic classification of ridge patterns. In addition to latent fingerprints being invisible to the naked eye, the escalating trends of disposing forensic evidence bearing such prints in watery bodies would further complicate criminal investigations. Taking into account the toxicity of small particle reagent (SPR) commonly used in visualising latent fingerprints on wet and non-porous objects, a greener alternative using the nanobio-based reagent (NBR) has been suggested. However, NBR only applies to white and/or relatively light-coloured objects. Thus, conjugation of sodium fluorescein dye with NBR (f-NBR) may be beneficial for increasing the contrast of fingerprint on multi-colored objects. Hence, this study was aimed at investigating the possibility of such conjugation (i.e., f-NBR) as well as proposing suitable interactions between the f-NBR and lipid constituents of fingerprints (tetra-, hexa- and octadecanoic acids) via molecular docking and molecular dynamics simulations. The binding energies between CRL with its ligands were observed at -8.1, -5.0, -4.9 and -3.6 kcal/mole for sodium fluorescein, tetra-, hexa- and octadecanoic acids, respectively. Besides, the formations of hydrogen bonds observed in all complexes (ranged between 2.6 and 3.4 Å), further supported by the stabilized root mean square deviation (RMSDs) plots in MD simulations. In short, the conjugation of f-NBR was computationally feasible, and thereby merits further investigations in the laboratory.Communicated by Ramaswamy H. Sarma.
  9. Oyewusi HA, Wu YS, Safi SZ, Wahab RA, Hatta MHM, Batumalaie K
    J Biomol Struct Dyn, 2023;41(13):6203-6218.
    PMID: 35904027 DOI: 10.1080/07391102.2022.2104375
    Diabetes mellitus (DM) is a global chronic disease characterized by hyperglycemia and insulin resistance. The unsavory severe gastrointestinal side-effects of synthetic drugs to regulate hyperglycemia have warranted the search for alternative treatments to inhibit the carbohydrate digestive enzymes (e.g. α-amylase and α-glucosidase). Certain phytochemicals recently captured the scientific community's attention as carbohydrate digestive enzyme inhibitors due to their low toxicity and high efficacy, specifically the Withanolides-loaded extract of Withania somnifera. That said, the present study evaluated in silico the efficacy of Withanolide A in targeting both α-amylase and α-glucosidase in comparison to the synthetic drug Acarbose. Protein-ligand interactions, binding affinity, and stability were characterized using pharmacological profiling, high-end molecular docking, and molecular-dynamic simulation. Withanolide A inhibited the activity of α-glucosidase and α-amylase better, exhibiting good pharmacokinetic properties, absorption, and metabolism. Also, Withanolide A was minimally toxic, with higher bioavailability. Interestingly, Withanolide A bonded well to the active site of α-amylase and α-glucosidase, yielding the lowest binding free energy of -82.144 ± 10.671 kcal/mol and -102.1043 ± 11.231 kcal/mol compared to the Acarbose-enzyme complexes (-63.220 ± 13.283 kcal/mol and -82.148 ± 10.671 kcal/mol). Hence, the findings supported the therapeutic potential of Withanolide A as α-amylase and α-glucosidase inhibitor for DM treatment.Communicated by Ramaswamy H. Sarma.
  10. Oyewusi HA, Adedamola Akinyede K, Wahab RA, Susanti E, Syed Yaacob SN, Huyop F
    J Biomol Struct Dyn, 2023 Jul 16.
    PMID: 37455463 DOI: 10.1080/07391102.2023.2234040
    The presence of synthetic dyes in water bodies and soil is one of the major issues affecting the global ecology, possibly impacting societal well-being adversely due to the colorants' recalcitrance and toxicity. Herein, the study spectrophotometrically monitored the ability of the Bacillus megaterium H2 azoreductase (AzrBmH2) to degrade four synthetic dyes, reactive blue 4, remazol brilliant red, thymol blue, and methyl red, followed by in-silico assessment using GROMACS. We found that the bacterium degraded as much as 60% of all four synthetic dyes at various tested concentrations. The genome analysis revealed five different azoreductase genes, which were then modeled into the AzrBmH21, AzrBmH22/3, and AzrBmH24/5 templates. The AzrBmH2-substrate complexes showed binding energies with all the dyes of between -10.6 to -6.9 kcal/mol and formed 4-6 hydrogen bonds with the predicted catalytic binding residues (His10, Glu 14, Ser 58, Met 99, Val 107, His 183, Asn184 and Gln 191). In contrast, the lowest binding energies were observed for the AzrBmH21-substrates (-10.6 to -7.9). Molecular dynamic simulations revealed that the AzrBmH21-substrate complexes were more stable (RMSD 0.2-0.25 nm, RMSF 0.05 - 0.3 nm) and implied strong bonding with the dyes. The Molecular Mechanics Poisson-Boltzmann Surface Area results also mirrored this outcome, showing the lowest azoreductase-dye binding energy in the order of AzrBmH21-RB4 (-78.18 ± 8.92 kcal/mol), AzrBmH21-RBR (-67.51 ± 7.74 kcal/mol), AzrBmH21-TB (-46.62 ± 5.23 kcal/mol) and AzrBmH21-MR (-40.78 ± 7.87 kcal/mol). In short, the study demonstrated the ability of the B. megaterium H2 to efficiently decolorize the above-said synthetic dyes, conveying the bacterium's promising use for large-scale dye remediation.Communicated by Ramaswamy H. Sarma.
  11. Ullah S, Huda N, Wahab RA, Hamid AAA, Nasir MHM, Mohamad MAN, et al.
    Data Brief, 2024 Feb;52:110044.
    PMID: 38328502 DOI: 10.1016/j.dib.2024.110044
    Green honey, was discovered on Banggi Island, Sabah, showing high in essential amino acids and chlorophyll derivatives. Despite its lucrative market potential owing to its distinctive color, uncertainties persist regarding its nature. This study leverages amplicon sequencing by targeting micro- and macro-organisms present in honey environmental DNA (eDNA) using Internal Transcribed Spacer 2 (ITS2) region, enabling the identification of floral and microorganism sources that represent the honey's composition. The investigation into green honey from Banggi Island concerns the prevalence of honey adulteration and authenticity for economic gain. Adulteration methods, such as the addition of sugar syrups, compromise honey purity. Using a sequencing approach would help in determining the geographic origin and verifying the authenticity of the honey. The study aims to identify plant species or microorganisms in honey's eDNA. To authenticate honey, we utilized ITS2 with Illumina sequencing, exploring the diversity of green honey samples. Raw sequence reads obtained for the green honey sample revealed 1,438,627 raw reads, with a GC average of 49.22 %. A total of 44 amplicon sequence variances (ASVs) were identified, including three genera: Zygosaccharomyces with two species, Fraxinus with three species, and the genus Ficaria with only one species. Their respective relative abundances were 98.55%, 0.94%, and 0.51%. Zygosaccharomyces rouxii and Zygosaccharomyces mellis were identified as the pre-dominant yeast species in honey, while the Fraxinus and Ficaria genus represent common plant species in Sabah, particularly in Banggi Island. The dominance of Zygosaccharomyces species aligns with their known prevalence in honey, affirming the reliability of our findings. The presence of Fraxinus and Ficaria in the honey sample correlates with its abundance in the local environment. This amplicon sequencing approach not only contributes to our understanding of green honey composition but also serves as a valuable resource for authenticating honey origin in Malaysia, particularly for green honey from Banggi Island, Sabah. Our study pioneers the application of ITS2 amplicon sequencing for green honey amplicon sequencing, providing valuable insights into its composition and origin. This methodology, with a focus on eDNA, contributes to the authentication and quality determination of honey in Malaysia, addressing the pressing concerns of adulteration and variability in production practices.
  12. Wahhab BH, Oyewusi HA, Wahab RA, Mohammad Hood MH, Abdul Hamid AA, Al-Nimer MS, et al.
    J Biomol Struct Dyn, 2024;42(3):1429-1442.
    PMID: 37038649 DOI: 10.1080/07391102.2023.2199870
    This study presents the initial structural model of L-haloacid dehalogenase (DehLBHS1) from Bacillus megaterium BHS1, an alkalotolerant bacterium known for its ability to degrade halogenated environmental pollutants. The model provides insights into the structural features of DehLBHS1 and expands our understanding of the enzymatic mechanisms involved in the degradation of these hazardous pollutants. Key amino acid residues (Arg40, Phe59, Asn118, Asn176, and Trp178) in DehLBHS1 were identified to play critical roles in catalysis and molecular recognition of haloalkanoic acid, essential for efficient binding and transformation of haloalkanoic acid molecules. DehLBHS1 was modeled using I-TASSER, yielding a best TM-score of 0.986 and an RMSD of 0.53 Å. Validation of the model using PROCHECK revealed that 89.2% of the residues were located in the most favored region, providing confidence in its structural accuracy. Molecular docking simulations showed that the non-simulated DehLBHS1 preferred 2,2DCP over other substrates, forming one hydrogen bond with Arg40 and exhibiting a minimum energy of -2.5 kJ/mol. The simulated DehLBHS1 exhibited a minimum energy of -4.3 kJ/mol and formed four hydrogen bonds with Arg40, Asn176, Asp9, and Tyr11, further confirming the preference for 2,2DCP. Molecular dynamics simulations supported this preference, based on various metrics, including RMSD, RMSF, gyration, hydrogen bonding, and molecular distance. MM-PBSA calculations showed that the DehLBHS1-2,2-DCP complex had a markedly lower binding energy (-21.363 ± 1.26 kcal/mol) than the DehLBHS1-3CP complex (-14.327 ± 1.738 kcal/mol). This finding has important implications for the substrate specificity and catalytic function of DehLBHS1, particularly in the bioremediation of 2,2-DCP in contaminated alkaline environments. These results provide a detailed view of the molecular interactions between the enzyme and its substrate and may aid in the development of more efficient biocatalytic strategies for the degradation of halogenated compounds.Communicated by Ramaswamy H. Sarma.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links