Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Petchi RR, Parasuraman S, Vijaya C
    J Basic Clin Pharm, 2013 Sep;4(4):88-92.
    PMID: 24808679 DOI: 10.4103/0976-0105.121655
    To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats.
  2. Sam AT, Lian Jessica LL, Parasuraman S
    J Basic Clin Pharm, 2015 Mar;6(2):64-8.
    PMID: 25767366 DOI: 10.4103/0976-0105.152095
    To retrospectively determine the extent and types of adverse drug events (ADEs) from the patient cases sheets and identify the contributing factors of medication errors. To assess causality and severity using the World Health Organization (WHO) probability scale and Hartwig's scale, respectively.
  3. Sivaraj R, Umarani S, Parasuraman S, Muralidhar P
    Perspect Clin Res, 2014 Jul;5(3):141-2.
    PMID: 24987588
  4. Parasuraman S, Thing GS, Dhanaraj SA
    Pharmacogn Rev, 2014 Jul;8(16):73-80.
    PMID: 25125878 DOI: 10.4103/0973-7847.134229
    Ayurveda is one of the traditional medicinal systems of Indian. The philosophy behind Ayurveda is preventing unnecessary suffering and living a long healthy life. Ayurveda involves the use of natural elements to eliminate the root cause of the disease by restoring balance, at the same time create a healthy life-style to prevent the recurrence of imbalance. Herbal medicines have existed world-wide with long recorded history and they were used in ancient Chinese, Greek, Egyptian and Indian medicine for various therapies purposes. World Health Organization estimated that 80% of the word's inhabitants still rely mainly on traditional medicines for their health care. The subcontinent of India is well-known to be one of the major biodiversity centers with about 45,000 plant species. In India, about 15,000 medicinal plants have been recorded, in which the communities used 7,000-7,500 plants for curing different diseases. In Ayurveda, single or multiple herbs (polyherbal) are used for the treatment. The Ayurvedic literature Sarangdhar Samhita' highlighted the concept of polyherbalism to achieve greater therapeutic efficacy. The active phytochemical constituents of individual plants are insufficient to achieve the desirable therapeutic effects. When combining the multiple herbs in a particular ratio, it will give a better therapeutic effect and reduce the toxicity. This review mainly focuses on important of the polyherbalism and its clinical significance.
  5. Vijayakumar B, Parasuraman S, Raveendran R, Velmurugan D
    Pharmacogn Mag, 2014 Aug;10(Suppl 3):S639-44.
    PMID: 25298685 DOI: 10.4103/0973-1296.139809
    Cleistanthins A and B are isolated compounds from the leaves of Cleistanthus collinus Roxb (Euphorbiaceae). This plant is poisonous in nature which causes cardiovascular abnormalities such as hypotension, nonspecific ST-T changes and QTc prolongation. The biological activity predictions spectra of the compounds show the presence of antihypertensive, diuretic and antitumor activities.
  6. Petchi RR, Vijaya C, Parasuraman S
    J Tradit Complement Med, 2014 Apr;4(2):108-17.
    PMID: 24860734 DOI: 10.4103/2225-4110.126174
    Glycosmis pentaphylla, Tridax procumbens, and Mangifera indica are well-known plants available throughout India and they are commonly used for the treatment of various diseases including diabetes mellitus. The antidiabetic activity of the individual plant parts is well known, but the synergistic or combined effects are unclear. The concept of polyherbalism has been highlighted in Sharangdhar Samhita, an Ayurvedic literature dating back to 1300 AD. Polyherbal formulations enhance the therapeutic action and reduce the concentrations of single herbs, thereby reducing adverse events. The aim of the present study is to formulate a polyherbal formulation and evaluate its antidiabetic potential in animals. The polyherbal formulation was formulated using the ethanol extracts of the stem bark of G. pentaphylla, whole plant of T. procumbens, and leaves of M. indica. The polyherbal formulation contains the ethanol extracts of G. pentaphylla, T. procumbens, and M. indica in the ratio of 2:2:1. The quality of the finished product was evaluated as per the World Health Organization's guidelines for the quality control of herbal materials. The quality testing parameters of the polyherbal formulation were within the limits. Fingerprint analysis of the polyherbal formulation showed effective separation at 366 nm, and it revealed that the active compound present in the polyherbal formulation and the active compounds present in all the three extracts were the same. The acute toxicity studies of the polyherbal formulation did not show any toxic symptoms in doses up to 2000 mg/kg over 14 days. The oral antidiabetic activity of the polyherbal formulation (250 and 500 mg/kg) was screened against streptozotocin (50 mg/kg; i.p.) + nicotinamide (120 mg/kg; i.p.) induced diabetes mellitus in rats. The investigational drug was administered for 21 consecutive days, and the effect of the polyherbal formulation on blood glucose levels was studied at regular intervals. At the end of the study, the blood samples were collected from all the animals for biochemical estimation, and the animals were sacrificed and the liver and pancreatic tissues were collected for histopathologic analysis. Polyherbal formulation showed significant antidiabetic activity at 250 and 500 mg/kg, respectively, and this effect was comparable with that of glibenclamide. The antidiabetic activity of polyherbal formulation is supported by biochemical and histopathologic analysis.
  7. Sivaraj R, Umarani S, Parasuraman S, Muralidhar P
    Perspect Clin Res, 2014 Jan;5(1):16-9.
    PMID: 24551582 DOI: 10.4103/2229-3485.124557
    To compare the therapeutic cure rate and adverse reactions in the regimens of the Revised National Tuberculosis Control Program (RNTCP) with directly observed treatment, short-course (DOTS) and without DOTS.
  8. Khalid YM, Gouwanda D, Parasuraman S
    Proc Inst Mech Eng H, 2015 Jun;229(6):452-63.
    PMID: 25979442 DOI: 10.1177/0954411915585597
    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings.
  9. Anand David AV, Arulmoli R, Parasuraman S
    Pharmacogn Rev, 2017 1 14;10(20):84-89.
    PMID: 28082789 DOI: 10.4103/0973-7847.194044
    Antioxidants are substances that may protect cells from the damage caused by unstable molecules such as free radicals. Flavonoids are phenolic substances widely found in fruits and vegetables. The previous studies showed that the ingestion of flavonoids reduces the risk of cardiovascular diseases, metabolic disorders, and certain types of cancer. These effects are due to the physiological activity of flavonoids in the reduction of oxidative stress, inhibiting low-density lipoproteins oxidation and platelet aggregation, and acting as vasodilators in blood vessels. Free radicals are constantly generated resulting in extensive damage to tissues leading to various disease conditions such as cancer, Alzheimer's, renal diseases, cardiac abnormalities, etc., Medicinal plants with antioxidant properties play a vital functions in exhibiting beneficial effects and employed as an alternative source of medicine to mitigate the disease associated with oxidative stress. Flavonoids have existed over one billion years and possess wide spectrum of biological activities that might be able to influence processes which are dysregulated in a disease. Quercetin, a plant pigment is a potent antioxidant flavonoid and more specifically a flavonol, found mostly in onions, grapes, berries, cherries, broccoli, and citrus fruits. It is a versatile antioxidant known to possess protective abilities against tissue injury induced by various drug toxicities.
  10. Parasuraman S, Elamvazuthi I, Kanagaraj G, Natarajan E, Pugazhenthi A
    Materials (Basel), 2021 Mar 31;14(7).
    PMID: 33807476 DOI: 10.3390/ma14071726
    Reinforced aluminum composites are the basic class of materials for aviation and transport industries. The machinability of these composites is still an issue due to the presence of hard fillers. The current research is aimed to investigate the drilling topographies of AA7075/TiB2 composites. The samples were prepared with 0, 3, 6, 9 and 12 wt.% of fillers and experiments were conducted by varying the cutting speed, feed, depth of cut and tool nose radius. The machining forces and surface topographies, the structure of the cutting tool and chip patterns were examined. The maximum cutting force was recorded upon increase in cutting speed because of thermal softening, loss of strength discontinuity and reduction of the built-up-edge. The increased plastic deformation with higher cutting speed resulted in the excess metal chip. In addition, the increase in cutting speed improved the surface roughness due to decrease in material movement. The cutting force was decreased upon high loading of TiB2 due to the deterioration of chips caused by fillers. Further introduction of TiB2 particles above 12 wt.% weakened the composite; however, due to the impact of the microcutting action of the fillers, the surface roughness was improved.
  11. Muralidharan S, Jayaraja Kumar K, Parasuraman S
    J Young Pharm, 2013 Sep;5(3):98-101.
    PMID: 24396250 DOI: 10.1016/j.jyp.2013.06.007
    To develop a simple and sensitive method of ketorolac in drug free human plasma using high-performance liquid chromatographic (HPLC).
  12. Petchi RR, Parasuraman S, Vijaya C, Gopala Krishna SV, Kumar MK
    J Basic Clin Pharm, 2015 Jun;6(3):77-83.
    PMID: 26229343 DOI: 10.4103/0976-0105.160738
    OBJECTIVES:
    To formulate a polyherbal formulation and evaluate its antiarthritic activity against Freund's complete adjuvant induced arthritis in Female Wistar rats.

    MATERIALS AND METHODS:
    Glycosmis pentaphylla, Tridax procumbens, and Mangifera indica are well-known plants available throughout India and they are commonly used for the treatment of various diseases including arthritis. The polyherbal formulation was formulated using the ethanol extracts of the stem bark of G. pentaphylla , whole plant of T. procumbens, and leaves of M. indica. The polyherbal formulation contains the ethanol extracts of G. pentaphylla, T. procumbens, and M. indica in the ratio of 2:2:1. The quality of the finished product was evaluated as per the World Health Organization's guidelines for the quality control of herbal materials. Arthritis was induced in female Wistar rats using Freund's complete adjuvant (FCA), and the antiarthritic effect of polyherbal formulation was studied at doses of 250 and 500 mg/kg. The effects were compared with those of indomethacin (10 mg/kg). At the end of the study, blood samples were collected for biochemical and hematological analysis. The radiological examination was carried out before terminating the study.

    RESULTS:
    Polyherbal formulation showed significant antiarthritic activity at 250 and 500 mg/kg, respectively, and this effect was comparable with that of indomethacin. The antiarthritic activity of polyherbal formulation is supported by biochemical and hematological analysis.

    CONCLUSION:
    The polyherbal formulation showed signinicant antiarthritic activity against FCA-induced arthritis in female Wistar rats.

    KEYWORDS:
    Arthritis; Fingerprint analysis; Glycosmis pentaphylla; Mangifera indica; Tridax procumbens
  13. Kosalishkwaran G, Parasuraman S, Singh DKJ, Natarajan E, Elamvazuthi I, George J
    Med Biol Eng Comput, 2019 Oct;57(10):2305-2318.
    PMID: 31444622 DOI: 10.1007/s11517-019-02026-6
    Degenerative disc disease (DDD) is a common condition in elderly population that can be painful and can significantly affect individual's quality of life. Diagnosis of DDD allows prompt corrective actions but it is challenging due to the absence of any symptoms at early stages. In studying disc degeneration, measurement of the range of motion (RoM) and loads acting on the spine are crucial factors. However, direct measurement of RoM involves increased instrumentation and risk. In this paper, an innovative method is proposed for calculating RoM, emphasizing repeatability and reliability by considering the posterior thickness of the spine. This is achieved by offsetting the position of markers in relation to the actual vertebral loci. Three geometrically identical finite element models of L3-L4 are developed from a CT scan with different types of elements, and thereafter, mesh element-related metrics are provided for the assessment of the quality of models. The model with the best mesh quality is used for further analysis, where RoM are within ranges as reported in literature and in vivo experiment results. Various kinds of stresses acting on individual components including facet joints are analysed for normal and abnormal loading conditions. The results showed that the stresses in abnormal load conditions for all components including cortical (76.67 MPa), cancellous (69.18 MPa), annulus (6.30 MPa) and nucleus (0.343 MPa) are significantly greater as compared to normal loads (49.96 MPa, 44.2 MPa, 4.28 MPa and 0.23 MPa respectively). However, stress levels for both conditions are within safe limits (167-215 MPa for cortical, 46 MPa for the annulus and 3 MPa for facets). The results obtained could be used as a baseline motion and stresses of healthy subjects based on their respective lifestyles, which could benefit clinicians to suggest corrective actions for those affected by DDD.
  14. Xian TH, Parasuraman S, Sinniah K, Ravichandran M, Prabhakaran G
    Vaccine, 2019 01 29;37(5):711-720.
    PMID: 30630696 DOI: 10.1016/j.vaccine.2018.12.027
    The repeated dose toxicity of a prototype cold chain-free, live, attenuated oral cholera vaccine containing 5 × 106 CFU/mL of the VCUSM14P strain was evaluated in Sprague Dawley (SD) rats (single dose administered daily for 30 days) to ascertain its safety for clinical use. Repeated dose toxicity studies for cholera vaccines in the literature have administered 2 or 3 fixed doses at 7, 14, 21 or 69 day intervals. The present study reports an evaluation of 30 repeated doses of cholera vaccine administered at three different concentrations (Group II (1.25 × 106 CFU), Group III (2.5 × 106 CFU) and Group IV (5 × 106 CFU)) in SD rats. The liquid vaccine was administered orally to the rats with the respective dose every day, and normal saline was administered to the control group (Group I). No significant difference (P > 0.05) was observed in the body weights and biochemical parameters of the rats after 15 and 30 repeated doses compared to those of the control group. However, compared to those of Group I, a significant increase (P 
  15. Lal LPJ, Ramesh S, Parasuraman S, Natarajan E, Elamvazuthi I
    Materials (Basel), 2019 Sep 20;12(19).
    PMID: 31547117 DOI: 10.3390/ma12193057
    Nanosilica particles were utilized as secondary reinforcement to enhance the strength of the epoxy resin matrix. Thin glass fibre reinforced polymer (GFRP) composite laminates of 3 ± 0.25 mm were developed with E-Glass mats of 610 GSM and LY556 epoxy resin. Nanosilica fillers were mixed with epoxy resin in the order of 0.25, 0.5, 0.75 and 1 wt% through mechanical stirring followed by an ultrasonication method. Thereafter, the damage was induced on toughened laminates through low-velocity drop weight impact tests and the induced damage was assessed through an image analysis tool. The residual compression strength of the impacted laminates was assessed through compression after impact (CAI) experiments. Laminates with nanosilica as secondary reinforcement exhibited enhanced compression strength, stiffness, and damage suppression. Results of Fourier-transform infrared spectroscopy revealed that physical toughening mechanisms enhanced the strength of the nanoparticle-reinforced composite. Failure analysis of the damaged area through scanning electron microscopy (SEM) evidenced the presence of key toughening mechanisms like damage containment through micro-cracks, enhanced fiber-matrix bonding, and load transfer.
  16. Christapher PV, Parasuraman S, Asmawi MZ, Murugaiyah V
    Regul Toxicol Pharmacol, 2017 Jun;86:33-41.
    PMID: 28229903 DOI: 10.1016/j.yrtph.2017.02.005
    Medicinal plant preparations may contain high levels of toxic chemical constituents to potentially cause serious harm to animals and/or humans. Thus, toxicity studies are important to assess the toxic effects of plant derived products. Polygonum minus is used traditionally for different ailments in Southeast Asia. This study was conducted to establish the acute and subchronic toxicity profile of the methanol extract of P. minus leaves. The acute toxicity study showed that the methanol extract of P. minus is safe even at the highest dose tested of 2000 mg/kg in female Sprague Dawley rats. There were no behavioural or physiological changes and gross pathological abnormalities observed. The subchronic toxicity study of methanol extract of P. minus at 250, 500, 1000 and 2000 mg/kg were conducted in both sexes of Sprague Dawley rats. There were no changes observed in the extract treated animal's body weight, food and water intake, motor coordination, behaviour and mental alertness. The values of haematological and biochemical parameters were not different between the treated and control animals. The relative organ weights of extract-treated animals did not differ with that of control animals. Based on the present findings, the methanol extract of P. minus leaves could be considered safe up to the dose of 2000 mg/kg.
  17. Venkateskumar K, Parasuraman S, Chuen LY, Ravichandran V, Balamurgan S
    Curr Drug Discov Technol, 2020;17(4):507-514.
    PMID: 31424372 DOI: 10.2174/1570163816666190819141344
    About 95% of earth living space lies deep below the ocean's surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links