Displaying all 14 publications

Abstract:
Sort:
  1. Patel JJ, Acharya SR, Acharya NS
    J Ethnopharmacol, 2014 Jun 11;154(2):268-85.
    PMID: 24727551 DOI: 10.1016/j.jep.2014.03.071
    Clerodendrum serratum (L.) Moon. (Verbenaceae) is an important medicinal plant growing in the tropical and warm temperate regions like Africa, Southern Asia; Malaysia and distributed throughout in forests of India and Sri Lanka. It is traditionally valued and reported for treating pain, inflammation, rheumatism, respiratory disorders, fever and malarial fever in India with a long history. To provide a comprehensive overview of the traditional and ethno medicinal uses, phytochemistry and biological activities of C. serratum with clinical and toxicity data and possibly make recommendations for further research.
  2. Patel JJ, Lee ZY, Stoppe C, Heyland DK
    Lancet, 2023 Sep 16;402(10406):964.
    PMID: 37716768 DOI: 10.1016/S0140-6736(23)01253-9
  3. Stoppe C, Lee ZY, Ortiz L, Heyland DK, Patel JJ
    PMID: 35088422 DOI: 10.1002/jpen.2338
    Vitamin C is an essential micronutrient with antioxidant properties and its use in critical illness has gained interest in recent years.1 Four systematic reviews/meta-analyses (SRMAs) have been published in 2021 alone (see Table 1 summary).2-5 These 4 SRMAs included between 8-43 randomized controlled trials evaluating vitamin C with or without thiamine and/or corticosteroids in general ICU patients and those with sepsis and septic shock. 2-5 Fujii et al performed a network meta-analysis which is a method for comparing multiple treatments using both direct and indirect evidence across trials that included studies with vitamin C monotherapy or with thiamine and/or corticosteroids.9 This article is protected by copyright. All rights reserved.
  4. Dresen E, Lee ZY, Hill A, Notz Q, Patel JJ, Stoppe C
    Nutr Clin Pract, 2023 Feb;38(1):46-54.
    PMID: 36156315 DOI: 10.1002/ncp.10914
    In 1747, an important milestone in the history of clinical research was set, as the Scottish surgeon James Lind conducted the first randomized controlled trial. Lind was interested in scurvy, a severe vitamin C deficiency which caused the death of thousands of British seamen. He found that a dietary intervention with oranges and lemons, which are rich in vitamin C by nature, was effective to recover from scurvy. Because of its antioxidative properties and involvement in many biochemical processes, the essential micronutrient vitamin C plays a key role in the human biology. Moreover, the use of vitamin C in critical illness-a condition also resulting in death of thousands in the 21st century-has gained increasing interest, as it may restore vascular responsiveness to vasoactive agents, ameliorate microcirculatory blood flow, preserve endothelial barriers, augment bacterial defense, and prevent apoptosis. Because of its redox potential and powerful antioxidant capacity, vitamin C represents an inexpensive and safe antioxidant, with the potential to modify the inflammatory cascade and improve clinical outcomes of critically ill patients. This narrative review aims to update and provide an overview on the role of vitamin C in the human biology and in critically ill patients, and to summarize current evidence on the use of vitamin C in diverse populations of critically ill patients, in specific focusing on patients with sepsis and coronavirus disease 2019.
  5. Patel JJ, Ortiz-Reyes A, Dhaliwal R, Clarke J, Hill A, Stoppe C, et al.
    Crit Care Med, 2022 Mar 01;50(3):e304-e312.
    PMID: 34637420 DOI: 10.1097/CCM.0000000000005320
    OBJECTIVES: To conduct a systematic review and meta-analysis to evaluate the impact of IV vitamin C on outcomes in critically ill patients.

    DATA SOURCES: Systematic search of MEDLINE, EMBASE, CINAHL, and the Cochrane Register of Controlled Trials.

    STUDY SELECTION: Randomized controlled trials testing IV vitamin C in critically ill patients.

    DATA ABSTRACTION: Two independent reviewers abstracted patient characteristics, treatment details, and clinical outcomes.

    DATA SYNTHESIS: Fifteen studies involving 2,490 patients were identified. Compared with placebo, IV vitamin C administration is associated with a trend toward reduced overall mortality (relative risk, 0.87; 95% CI, 0.75-1.00; p = 0.06; test for heterogeneity I2 = 6%). High-dose IV vitamin C was associated with a significant reduction in overall mortality (relative risk, 0.70; 95% CI, 0.52-0.96; p = 0.03), whereas low-dose IV vitamin C had no effect (relative risk, 0.94; 95% CI, 0.79-1.07; p = 0.46; test for subgroup differences, p = 0.14). IV vitamin C monotherapy was associated with a significant reduction in overall mortality (relative risk, 0.64; 95% CI, 0.49-0.83; p = 0.006), whereas there was no effect with IV vitamin C combined therapy. No trial reported an increase in adverse events related to IV vitamin C.

    CONCLUSIONS: IV vitamin C administration appears safe and may be associated with a trend toward reduction in overall mortality. High-dose IV vitamin C monotherapy may be associated with improved overall mortality, and further randomized controlled trials are warranted.

  6. Patel JJ, Hill A, Lee ZY, Heyland DK, Stoppe C
    Crit Care Med, 2022 Sep 01;50(9):1371-1379.
    PMID: 35853198 DOI: 10.1097/CCM.0000000000005602
    OBJECTIVES: Concise definitive review of how to read and critically appraise a systematic review.

    DATA SOURCES: None.

    STUDY SELECTION: Current literature describing the conduct, reporting, and appraisal of systematic reviews and meta-analyses.

    DATA EXTRACTION: Best practices for conducting, reporting, and appraising systematic review were summarized.

    DATA SYNTHESIS: A systematic review is a review of a clearly formulated question that uses systematic and explicit methods to identify, select, and critically appraise relevant original research, and to collect and analyze data from the studies that are included in the review. Critical appraisal methods address both the credibility (quality of conduct) and rate the confidence in the quality of summarized evidence from a systematic review. The A Measurement Tool to Assess Systematic Reviews-2 tool is a widely used practical tool to appraise the conduct of a systematic review. Confidence in estimates of effect is determined by assessing for risk of bias, inconsistency of results, imprecision, indirectness of evidence, and publication bias.

    CONCLUSIONS: Systematic reviews are transparent and reproducible summaries of research and conclusions drawn from them are only as credible and reliable as their development process and the studies which form the systematic review. Applying evidence from a systematic review to patient care considers whether the results can be directly applied, whether all important outcomes have been considered, and if the benefits are worth potential harms and costs.

  7. Stoppe C, Lee ZY, Lew CCH, Hill A, Ortiz-Reyes A, Heyland DK, et al.
    Crit Care Med, 2022 Sep 01;50(9):e720-e721.
    PMID: 35984061 DOI: 10.1097/CCM.0000000000005600
  8. Lee ZY, Yap CSL, Hasan MS, Engkasan JP, Barakatun-Nisak MY, Day AG, et al.
    Crit Care, 2021 07 23;25(1):260.
    PMID: 34301303 DOI: 10.1186/s13054-021-03693-4
    BACKGROUND: The optimal protein dose in critical illness is unknown. We aim to conduct a systematic review of randomized controlled trials (RCTs) to compare the effect of higher versus lower protein delivery (with similar energy delivery between groups) on clinical and patient-centered outcomes in critically ill patients.

    METHODS: We searched MEDLINE, EMBASE, CENTRAL and CINAHL from database inception through April 1, 2021.We included RCTs of (1) adult (age ≥ 18) critically ill patients that (2) compared higher vs lower protein with (3) similar energy intake between groups, and (4) reported clinical and/or patient-centered outcomes. We excluded studies on immunonutrition. Two authors screened and conducted quality assessment independently and in duplicate. Random-effect meta-analyses were conducted to estimate the pooled risk ratio (dichotomized outcomes) or mean difference (continuous outcomes).

    RESULTS: Nineteen RCTs were included (n = 1731). Sixteen studies used primarily the enteral route to deliver protein. Intervention was started within 72 h of ICU admission in sixteen studies. The intervention lasted between 3 and 28 days. In 11 studies that reported weight-based nutrition delivery, the pooled mean protein and energy received in higher and lower protein groups were 1.31 ± 0.48 vs 0.90 ± 0.30 g/kg and 19.9 ± 6.9 versus 20.1 ± 7.1 kcal/kg, respectively. Higher vs lower protein did not significantly affect overall mortality [risk ratio 0.91, 95% confidence interval (CI) 0.75-1.10, p = 0.34] or other clinical or patient-centered outcomes. In 5 small studies, higher protein significantly attenuated muscle loss (MD -3.44% per week, 95% CI -4.99 to -1.90; p 

  9. Lee ZY, Lew CCH, Ortiz-Reyes A, Patel JJ, Wong YJ, Loh CTI, et al.
    Clin Nutr, 2023 Apr;42(4):519-531.
    PMID: 36857961 DOI: 10.1016/j.clnu.2023.01.019
    BACKGROUND & AIMS: Several systematic reviews and meta-analyses of randomized controlled trials concluded that probiotics administration in critically ill patients was safe and associated with reduced rates of ventilator-associated pneumonia and diarrhea. However, a recent large multicenter trial found probiotics administration, compared to placebo, was not efficacious and increased adverse events. An updated meta-analysis that controls for type-1 and -2 errors using trial sequential analysis, with a detailed account of adverse events associated with probiotic administration, is warranted to confirm the safety and efficacy of probiotic use in critically ill patients.

    METHODS: RCTs that compared probiotics or synbiotics to usual care or placebo and reported clinical and diarrheal outcomes were searched in 4 electronic databases from inception to March 8, 2022 without language restriction. Four reviewers independently extracted data and assessed the study qualities using the Critical Care Nutrition (CCN) Methodological Quality Scoring System. Random-effect meta-analysis and trial sequential analysis (TSA) were used to synthesize the results. The primary outcome was ventilator-associated pneumonia (VAP). The main subgroup analysis compared the effects of higher versus lower quality studies (based on median CCN score).

    RESULTS: Seventy-five studies with 71 unique trials (n = 8551) were included. In the overall analysis, probiotics significantly reduced VAP incidence (risk ratio [RR] 0.70, 95% confidence interval [CI] 0.56-0.88; I2 = 65%; 16 studies). However, such benefits were demonstrated only in lower (RR 0.47, 95% CI 0.32, 0.69; I2 = 44%; 7 studies) but not higher quality studies (RR 0.89, 95% CI 0.73, 1.08; I2 = 43%; 9 studies), with significant test for subgroup differences (p = 0.004). Additionally, TSA showed that the VAP benefits of probiotics in the overall and subgroup analyses were type-1 errors. In higher quality trials, TSA found that future trials are unlikely to demonstrate any benefits of probiotics on infectious complications and diarrhea. Probiotics had higher adverse events than control (pooled risk difference: 0.01, 95% CI 0.01, 0.02; I2 = 0%; 22 studies).

    CONCLUSION: High-quality RCTs did not support a beneficial effect of probiotics on clinical or diarrheal outcomes in critically ill patients. Given the lack of benefits and the increased incidence of adverse events, probiotics should not be routinely administered to critically ill patients.

    PROSPERO REGISTRATION: CRD42022302278.

  10. Lee ZY, Ortiz-Reyes L, Lew CCH, Hasan MS, Ke L, Patel JJ, et al.
    Ann Intensive Care, 2023 Mar 07;13(1):14.
    PMID: 36882644 DOI: 10.1186/s13613-023-01116-x
    BACKGROUND: A recent landmark randomized controlled trial (RCT) in septic patients demonstrated an increased risk of death and persistent organ dysfunction with intravenous Vitamin C (IVVC) monotherapy, which represents a disparate result from previous systematic reviews and meta-analyses (SRMA). We performed an updated SRMA of IVVC monotherapy to summarize and explore heterogeneity across current trials and conduct trial sequential analysis (TSA) to guard against type-I or type-II statistical errors.

    METHODS: RCTs evaluating IVVC in adult critically ill patients were included. Four databases were searched from inception to 22 June 2022 without language restrictions. The primary outcome was overall mortality. Random effect meta-analysis was performed to estimate the pooled risk ratio. TSA for mortality was performed using the DerSimonian-Laird random effect model, alpha 5%, beta 10%, and relative risk reduction (RRR) of 30%, 25%, and 20%.

    RESULTS: We included 16 RCTs (n = 2130). IVVC monotherapy is associated with significant reduction in overall mortality [risk ratio (RR) 0.73, 95% confidence interval (CI) 0.60-0.89; p = 0.002; I2 = 42%]. This finding is supported by TSA using RRR of 30% and 25%, and sensitivity analysis using fixed-effect meta-analysis. However, the certainty of our mortality finding was rated low using GRADE due to the serious risk of bias and inconsistency. In a priori subgroup analyses, we found no differences between single vs multicenter, higher (≥ 10,000 mg/day) vs lower dose and sepsis vs non-sepsis trials. Post-hoc, we found no differences in subgroup analysis of earlier ( 4 days) vs shorter treatment duration, and low vs other risk of bias studies. IVVC may have the greatest benefit in trials that enrolled patients above (i.e., > 37.5%; RR 0.65, 95% CI 0.54-0.79) vs below (i.e., ≤ 37.5%; RR 0.89, 95% CI 0.68-1.16) median control group mortality (test for subgroup differences: p = 0.06), and TSA supported this.

    CONCLUSIONS: IVVC monotherapy may be associated with mortality benefits in critically ill patients, particularly in patients with a high risk of dying. Given the low certainty of evidence, this potentially life-saving therapy warrants further studies to identify the optimal timing, dosage, treatment duration, and patient population that will benefit most from IVVC monotherapy. PROSPERO Registration ID: CRD42022323880. Registered 7th May 2022.

  11. Lee ZY, Chin Han Lew C, Stoppe C, Hill A, Ortiz-Reyes A, Dhaliwal R, et al.
    Crit Care Med, 2022 Aug 01;50(8):e691-e693.
    PMID: 35838267 DOI: 10.1097/CCM.0000000000005573
  12. Ortiz-Reyes L, Lee ZY, Chin Han Lew C, Hill A, Jeschke MG, Turgeon AF, et al.
    Crit Care Med, 2023 Aug 01;51(8):1086-1095.
    PMID: 37114912 DOI: 10.1097/CCM.0000000000005887
    OBJECTIVES: Evidence supporting glutamine supplementation in severe adult burn patients has created a state of uncertainty due to the variability in the treatment effect reported across small and large randomized controlled trials (RCTs). We aimed to systematically review the effect of glutamine supplementation on mortality in severe adult burn patients.

    DATA SOURCES: MEDLINE, Embase, CINAHL, and Cochrane Central were searched from inception to February 10, 2023.

    STUDY SELECTION: RCTs evaluating the effect of enteral or IV glutamine supplementation alone in severe adult burn patients were included.

    DATA EXTRACTION: Two reviewers independently extracted data on study characteristics, burn injury characteristics, description of the intervention between groups, adverse events, and clinical outcomes.

    DATA SYNTHESIS: Random effects meta-analyses were performed to estimate the pooled risk ratio (RR). Trial sequential analyses (TSA) for mortality and infectious complications were performed. Ten RCTs (1,577 patients) were included. We observed no significant effect of glutamine supplementation on overall mortality (RR, 0.65, 95% CI, 0.33-1.28; p = 0.21), infectious complications (RR, 0.83; 95% CI, 0.63-1.09; p = 0.18), or other secondary outcomes. In subgroup analyses, we observed no significant effects based on administration route or burn severity. We did observe a significant subgroup effect between single and multicenter RCTs in which glutamine significantly reduced mortality and infectious complications in singe-center RCTs but not in multicenter RCTs. However, TSA showed that the pooled results of single-center RCTs were type 1 errors and further trials would be futile.

    CONCLUSIONS: Glutamine supplementation, regardless of administration, does not appear to improve clinical outcomes in severely adult burned patients.

  13. Stoppe C, Patel JJ, Zarbock A, Lee ZY, Rice TW, Mafrici B, et al.
    Crit Care, 2023 Oct 18;27(1):399.
    PMID: 37853490 DOI: 10.1186/s13054-023-04663-8
    BACKGROUND: Based on low-quality evidence, current nutrition guidelines recommend the delivery of high-dose protein in critically ill patients. The EFFORT Protein trial showed that higher protein dose is not associated with improved outcomes, whereas the effects in critically ill patients who developed acute kidney injury (AKI) need further evaluation. The overall aim is to evaluate the effects of high-dose protein in critically ill patients who developed different stages of AKI.

    METHODS: In this post hoc analysis of the EFFORT Protein trial, we investigated the effect of high versus usual protein dose (≥ 2.2 vs. ≤ 1.2 g/kg body weight/day) on time-to-discharge alive from the hospital (TTDA) and 60-day mortality and in different subgroups in critically ill patients with AKI as defined by the Kidney Disease Improving Global Outcomes (KDIGO) criteria within 7 days of ICU admission. The associations of protein dose with incidence and duration of kidney replacement therapy (KRT) were also investigated.

    RESULTS: Of the 1329 randomized patients, 312 developed AKI and were included in this analysis (163 in the high and 149 in the usual protein dose group). High protein was associated with a slower time-to-discharge alive from the hospital (TTDA) (hazard ratio 0.5, 95% CI 0.4-0.8) and higher 60-day mortality (relative risk 1.4 (95% CI 1.1-1.8). Effect modification was not statistically significant for any subgroup, and no subgroups suggested a beneficial effect of higher protein, although the harmful effect of higher protein target appeared to disappear in patients who received kidney replacement therapy (KRT). Protein dose was not significantly associated with the incidence of AKI and KRT or duration of KRT.

    CONCLUSIONS: In critically ill patients with AKI, high protein may be associated with worse outcomes in all AKI stages. Recommendation of higher protein dosing in AKI patients should be carefully re-evaluated to avoid potential harmful effects especially in patients who were not treated with KRT.

    TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT03160547) on May 17th 2017.

  14. Stoppe C, Dresen E, Wendt S, Elke G, Patel JJ, McKeever L, et al.
    JPEN J Parenter Enteral Nutr, 2023 Jul;47(5):604-613.
    PMID: 36912124 DOI: 10.1002/jpen.2495
    BACKGROUND: Cardiac surgery patients with a prolonged stay in the intensive care unit (ICU) are at high risk for acquired malnutrition. Medical nutrition therapy practices for cardiac surgery patients are unknown. The objective of this study is to describe the current nutrition practices in critically ill cardiac surgery patients worldwide.

    METHODS: We conducted a prospective observational study in 13 international ICUs involving mechanically ventilated cardiac surgery patients with an ICU stay of at least 72 h. Collected data included the energy and protein prescription, type of and time to the initiation of nutrition, and actual quantity of energy and protein delivered (maximum: 12 days).

    RESULTS: Among 237 enrolled patients, enteral nutrition (EN) was started, on average, 45 h after ICU admission (range, 0-277 h; site average, 53 [range, 10-79 h]). EN was prescribed for 187 (79%) patients and combined EN and parenteral nutrition in 33 (14%). Overall, patients received 44.2% (0.0%-117.2%) of the prescribed energy and 39.7% (0.0%-122.8%) of the prescribed protein. At a site level, the average nutrition adequacy was 47.5% (30.5%-78.6%) for energy and 43.6% (21.7%-76.6%) for protein received from all nutrition sources.

    CONCLUSION: Critically ill cardiac surgery patients with prolonged ICU stay experience significant delays in starting EN and receive low levels of energy and protein. There exists tremendous variability in site performance, whereas achieving optimal nutrition performance is doable.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links