Displaying all 5 publications

Abstract:
Sort:
  1. Reynolds G, Payne J, Sinun W, Mosigil G, Walsh RP
    Philos. Trans. R. Soc. Lond., B, Biol. Sci., 2011 Nov 27;366(1582):3168-76.
    PMID: 22006960 DOI: 10.1098/rstb.2011.0154
    In an earlier special issue of this journal, Marsh & Greer summarized forest land use in Sabah at that time and gave an introduction to the Danum Valley Conservation Area. Since that assessment, during the period 1990-2010, the forests of Sabah and particularly those of the ca 10 000 km(2) concession managed on behalf of the State by Yayasan Sabah (the Sabah Foundation) have been subject to continual, industrial harvesting, including the premature re-logging of extensive tracts of previously only once-logged forest and large-scale conversion of natural forests to agricultural plantations. Over the same period, however, significant areas of previously unprotected pristine forest have been formally gazetted as conservation areas, while much of the forest to the north, the south and the east of the Danum Valley Conservation Area (the Ulu Segama and Malua Forest Reserves) has been given added protection and new forest restoration initiatives have been launched. This paper analyses these forest-management and land-use changes in Sabah during the period 1990-2010, with a focus on the Yayasan Sabah Forest Management Area. Important new conservation and forest restoration and rehabilitation initiatives within its borders are given particular emphasis.
  2. Alfred R, Ahmad AH, Payne J, Williams C, Ambu LN, How PM, et al.
    PLoS ONE, 2012;7(2):e31400.
    PMID: 22347469 DOI: 10.1371/journal.pone.0031400
    Home range is defined as the extent and location of the area covered annually by a wild animal in its natural habitat. Studies of African and Indian elephants in landscapes of largely open habitats have indicated that the sizes of the home range are determined not only by the food supplies and seasonal changes, but also by numerous other factors including availability of water sources, habitat loss and the existence of man-made barriers. The home range size for the Bornean elephant had never been investigated before.
  3. Rovie-Ryan JJ, Zainuddin ZZ, Marni W, Ahmad AH, Ambu LN, Payne J
    Asian Pac J Trop Biomed, 2013 Feb;3(2):95-9.
    PMID: 23593586 DOI: 10.1016/S2221-1691(13)60031-3
    To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly.
  4. Ancrenaz M, Gimenez O, Ambu L, Ancrenaz K, Andau P, Goossens B, et al.
    PLoS Biol., 2005 Jan;3(1):e3.
    PMID: 15630475
    Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah.
  5. Slik JW, Aiba S, Bastian M, Brearley FQ, Cannon CH, Eichhorn KA, et al.
    Proc. Natl. Acad. Sci. U.S.A., 2011 Jul 26;108(30):12343-7.
    PMID: 21746913 DOI: 10.1073/pnas.1103353108
    The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links