Displaying all 7 publications

Abstract:
Sort:
  1. Nithyapriya S, Sundaram L, Eswaran SUD, Perveen K, Alshaikh NA, Sayyed RZ, et al.
    Microb Ecol, 2024 Apr 17;87(1):60.
    PMID: 38630182 DOI: 10.1007/s00248-024-02377-0
    Microorganisms produce siderophores, which are low-molecular-weight iron chelators when iron availability is limited. The present analyzed the role of LNPF1 as multifarious PGPR for improving growth parameters and nutrient content in peanut and soil nutrients. Such multifarious PGPR strains can be used as effective bioinoculants for peanut farming. In this work, rhizosphere bacteria from Zea mays and Arachis hypogaea plants in the Salem area of Tamil Nadu, India, were isolated and tested for biochemical attributes and characteristics that stimulate plant growth, such as the production of hydrogen cyanide, ammonia (6 µg/mL), indole acetic acid (76.35 µg/mL), and solubilizing phosphate (520 µg/mL). The 16S rRNA gene sequences identified the isolate LNPF1 as Pseudomonas fluorescens with a similarity percentage of 99% with Pseudomonas sp. Isolate LNPF1 was evaluated for the production of siderophore. Siderophore-rich supernatant using a Sep Pack C18 column and Amberlite-400 Resin Column (λmax 264) produced 298 mg/L and 50 mg/L of siderophore, respectively. The characterization of purified siderophore by TLC, HPLC, FTIR, and 2D-NMR analysis identified the compound as desferrioxamine, a hydroxamate siderophore. A pot culture experiment determined the potential of LNPF1 to improve iron and oil content and photosynthetic pigments in Arachis hypogaea L. and improve soil nutrient content. Inoculation of A. hypogea seeds with LNPF1 improved plant growth parameters such as leaf length (60%), shoot length (22%), root length (54.68%), fresh weight (47.28%), dry weight (37%), and number of nuts (66.66) compared to the control (untreated seeds). This inoculation also improved leaf iron content (43.42), short iron content (38.38%), seed iron (46.72%), seed oil (31.68%), carotenoid (64.40%), and total chlorophyll content (98.%) compared to control (untreated seeds). Bacterized seeds showed a substantial increase in nodulation (61.65%) and weight of individual nodules (95.97) vis-à-vis control. The results of the present study indicated that P. fluorescens might be utilized as a potential bioinoculant to improve growth, iron content, oil content, number of nuts and nodules of Arachishypogaea L., and enrich soil nutrients.
  2. Perveen K, Bukhari NA, Alshaikh NA, Kondaveeti SB, Alsulami JA, Debnath S, et al.
    Front Microbiol, 2024;15:1304234.
    PMID: 38646635 DOI: 10.3389/fmicb.2024.1304234
    BACKGROUND: Microorganisms are crucial in our ecosystem, offering diverse functions and adaptability. The UNGA Science Summit has underscored the importance of understanding microbes in alignment with the UN Sustainable Development Goals. Bacillus anthracis poses significant challenges among various microorganisms due to its harmful effects on both soil and public health. Our study employed computational techniques to investigate the inhibitory effects of curcumin and mangiferin on Bacillus anthracis, with the aim of presenting a novel bio-based approach to microbial management.

    METHODS: Employing high-throughput screening, we identified potential binding sites on B. anthracis. Molecular docking revealed that curcumin and mangiferin, when synergistically combined, exhibited strong binding affinities at different sites on the bacterium. Our findings demonstrated a significant drop in binding free energy, indicating a stronger interaction when these compounds were used together.

    FINDINGS: Results of Molecular docking indicated binding energies of -8.45 kcal/mol for mangiferin, -7.68 kcal/mol for curcumin, and a notably higher binding energy of -19.47 kcal/mol for the combination of mangiferin and curcumin with CapD protein. Molecular dynamics simulations further validated these interactions, demonstrating increased stability and structural changes in the bacterium.

    CONCLUSION: This study highlights the effectiveness of natural compounds like curcumin and mangiferin in microbial management, especially against challenging pathogens like B. anthracis. It emphasizes the potential of sustainable, nature-based solutions and calls for further empirical research to expand upon these findings.

  3. Khan AH, López-Maldonado EA, Khan NA, Villarreal-Gómez LJ, Munshi FM, Alsabhan AH, et al.
    Chemosphere, 2022 Mar;291(Pt 3):133088.
    PMID: 34856242 DOI: 10.1016/j.chemosphere.2021.133088
    Solid waste generation has rapidly increased due to the worldwide population, urbanization, and industrialization. Solid waste management (SWM) is a significant challenge for a society that arises local issues with global consequences. Thus, solid waste management strategies to recycle waste products are promising practices that positively impact sustainable goals. Several developed countries possess excellent solid waste management strategies to recycle waste products. Developing countries face many challenges, such as municipal solid waste (MSW) sorting and handling due to high population density and economic instability. This mismanagement could further expedite harmful environmental and socioeconomic concerns. This review discusses the current solid waste management and energy recovery production in developing countries; with statistics, this review provides a comprehensive revision on energy recovery technologies such as the thermochemical and biochemical conversion of waste with economic considerations. Furthermore, the paper discusses the challenges of SWM in developing countries, including several immediate actions and future policy recommendations for improving the current status of SWM via harnessing technology. This review has the potential of helping municipalities, government authorities, researchers, and stakeholders working on MSW management to make effective decisions for improved SWM for achieving sustainable development.
  4. Dasila H, Sah VK, Jaggi V, Kumar A, Tewari L, Taj G, et al.
    Front Microbiol, 2023;14:1135693.
    PMID: 37025630 DOI: 10.3389/fmicb.2023.1135693
    It is well-known that phosphate-solubilizing bacteria (PSB) promote crop growth and yield. The information regarding characterization of PSB isolated from agroforestry systems and their impact on wheat crops under field conditions is rarely known. In the present study, we aim to develop psychrotroph-based P biofertilizers, and for that, four PSB strains (Pseudomonas sp. L3, Pseudomonas sp. P2, Streptomyces sp. T3, and Streptococcus sp. T4) previously isolated from three different agroforestry zones and already screened for wheat growth under pot trial conditions were evaluated on wheat crop under field conditions. Two field experiments were employed; set 1 includes PSB + recommended dose of fertilizers (RDF) and set 2 includes PSB - RDF. In both field experiments, the response of the PSB-treated wheat crop was significantly higher compared to the uninoculated control. In field set 1, an increase of 22% in grain yield (GY), 16% in biological yield (BY), and 10% in grain per spike (GPS) was observed in consortia (CNS, L3 + P2) treatment, followed by L3 and P2 treatments. Inoculation of PSB mitigates soil P deficiency as it positively influences soil alkaline phosphatase (AP) and soil acid phosphatase (AcP) activity which positively correlated with grain NPK %. The highest grain NPK % was reported in CNS-treated wheat with RDF (N-0.26%, P-0.18%, and K-1.66%) and without RDF (N-0.27, P-0.26, and K-1.46%), respectively. All parameters, including soil enzyme activities, plant agronomic data, and yield data were analyzed by principal component analysis (PCA), resulting in the selection of two PSB strains. The conditions for optimal P solubilization, in L3 (temperature-18.46, pH-5.2, and glucose concentration-0.8%) and P2 (temperature-17°C, pH-5.0, and glucose concentration-0.89%), were obtained through response surface methodology (RSM) modeling. The P solubilizing potential of selected strains at <20°C makes them a suitable candidate for the development of psychrotroph-based P biofertilizers. Low-temperature P solubilization of the PSB strains from agroforestry systems makes them potential biofertilizers for winter crops.
  5. Nayana RUK, Nakkeeran S, Saranya N, Saravanan R, Mahendra K, Ashraf S, et al.
    Mol Biotechnol, 2023 Aug 09.
    PMID: 37556108 DOI: 10.1007/s12033-023-00797-w
    Fusarium oxysporum f. sp. cubense is one of the most severe and threatening pathogens of bananas, causing "Panama wilt" worldwide. Confrontation assay of Foc antagonistic bacterial endophyte, Bacillus velezensis YEBBR6, with the Foc and GC-MS profiling of excised agar from the zone of inhibition, led to the unveiling of secondary metabolites produced by the endophyte. To refine the probable antifungal compounds among the numerous biomolecules formed during their di-trophic interaction with the pathogen, fungal protein targets were modeled, and docking studies (AutoDock Vina module of the PyRx 0.8 server) were done with all the compounds. Triamcinolone acetonide exhibited the most excellent affinity for the protein targets among the compounds studied. It had a maximum binding affinity of 11.2 kcal/mol for XRN2 (5' → 3'). Further, the protein-ligand complex formation kinetics was done through Molecular Dynamic Simulation studies. Graphs for the RMSD, RMSF, Rg, potential energy, and SASA were generated, and the values during the simulation period suggested the stability of the biomolecule as a complex with the protein. This indicated Triamcinolone acetonide's potential ability to act as a functional disrupter of the target protein and likely an antifungal molecule. Further, the biomolecule was tested for its activity against Foc by screening in the wet lab through the poisoned plate technique, and it was found to be fully inhibitory to the growth of the pathogen at 1000 ppm.
  6. Kamal MA, Perveen K, Khan F, Sayyed RZ, Hock OG, Bhatt SC, et al.
    Front Microbiol, 2023;14:1228117.
    PMID: 37601347 DOI: 10.3389/fmicb.2023.1228117
    Heavy metal pollution of soil is a major concern due to its non-biodegradable nature, bioaccumulation, and persistence in the environment. To explore the probable function of EDTA in ameliorating heavy metal toxicity and achieve the sustainable development goal (SDG), Brassica juncea L. seedlings were treated with different concentrations of EDTA (0, 1.0, 2.0, 3.0, and 4.0 mM Kg-1) in heavy metal-polluted soil. Plant samples were collected 60 days after sowing; photosynthetic pigments, H2O2, monoaldehyde (MDA), antioxidant enzymes, and ascorbic acid content, as well as plant biomass, were estimated in plants. Soil and plant samples were also examined for the concentrations of Cd, Cr, Pb, and Hg. Moreover, values of the phytoremediation factor were utilized to assess the accumulation capacity of heavy metals by B. juncea under EDTA treatments. In the absence of EDTA, B. juncea seedlings accrued heavy metals in their roots and shoots in a concentration-dependent manner. However, the highest biomass of plants (roots and shoots) was recorded with the application of 2 mM kg-1 EDTA. Moreover, high levels (above 3 mM kg-1) of EDTA concentration have reduced the biomass of plants (roots and shoots), photosynthetic area, and chlorophyll content. The effect of EDTA levels on photosynthetic pigments (chlorophyll a and b) revealed that with an increment in EDTA concentration, accumulation of heavy metals was also increased in the plant, subsequently decreasing the chlorophyll a and b concentration in the plant. TLF was found to be in the order Pb> Hg> Zn> and >Ni, while TF was found to be in the order Hg>Zn>Ni>Pb, and the best dose was 3 mM kg-1 EDTA for Hg and 4 mM kg-1 for Pb, Ni, and Zn. Furthermore, hyperaccumulation of heavy metals enhanced the generation of hydrogen peroxide (H2O2), superoxide anions (O2•-), and lipid peroxidation. It also interrupts mechanisms of the antioxidant defense system. Furthermore, heavy metal stress reduced plant growth, biomass, and chlorophyll (chl) content. These findings suggest that the exogenous addition of EDTA to the heavy metal-treated seedlings increases the bioavailability of heavy metals for phytoextraction and decreases heavy metal-induced oxidative injuries by restricting heavy metal uptake and components of their antioxidant defense systems.
  7. Rajan N, Debnath S, Perveen K, Khan F, Pandey B, Srivastava A, et al.
    Front Plant Sci, 2023;14:1238870.
    PMID: 37719210 DOI: 10.3389/fpls.2023.1238870
    INTRODUCTION: This study explored the molecular characterization of 14 eggplant (brinjal) genotypes to evaluate their genetic diversity and the impact of heterosis. As eggplant is a vital horticultural crop with substantial economic and nutritional value, a comprehensive understanding of its genetic makeup and heterosis effects is essential for effective breeding strategies. Our aim was not only to dissect the genetic diversity among these genotypes but also to determine how genetic distance impacts heterotic patterns, which could ultimately help improve hybrid breeding programs.

    METHODS: Genetic diversity was assessed using 20 SSR markers, and the parental lines were grouped into five clusters based on the Unweighted Pair Group Method of Arithmetic Means (UPGMA). Heterosis was examined through yield and yield-related traits among parents and hybrids.

    RESULTS: Polymorphisms were detected in eight out of the twenty SSR markers across the parental lines. Notably, a high genetic distance was observed between some parents. The analysis of yield and yield-related traits demonstrated significant heterosis over mid, superior, and standard parents, particularly in fruit yield per plant. Two crosses (RKML-26 X PPC and RKML1 X PPC) displayed substantial heterosis over mid and better parents, respectively. However, the positive correlation between genetic distance and heterosis was only up to a certain threshold; moderate genetic distance often resulted in higher heterosis compared to very high genetic distance.

    DISCUSSION: These findings emphasize the critical role of parental selection in hybrid breeding programs. The results contribute to the understanding of the relationship between genetic distance and heterosis, and it is suggested that future research should delve into the genetic mechanisms that drive heterosis and the effect of genetic distance variance on heterosis. The insights drawn from this study can be harnessed to enhance crop yield and economic value in breeding programs.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links