METHODS: HCAECs were stimulated for 24 hours (h) with 200 µg/ml of Lipopolysaccharides (LPS) and different concentrations of NSO (55, 110, 220, 440 µg/ml) or TQ (4.5, 9.0, 18.0, 36.0 µm). The effects of NSO and TQ on gene and protein expressions were measured using multiplex gene assay and ELISA assay, respectively. Rose Bengal assay was used to analyse monocyte binding activity.
RESULTS: NSO and TQ significantly reduced ICAM-1 and VCAM-1 gene and protein expressions. TQ showed significant reduction activity of the biomarkers in dose dependent manner. HCAECs pre-treated with NSO and TQ for 24 h significantly lowered monocytes adherence compared to non-treated HCAECs.
CONCLUSIONS: NSO and TQ supplementation have anti-atherogenic properties and inhibit monocytes' adherence to HCAECs via down-regulation of ICAM-1 expression. NSO could potentially be incorporated in standard treatment regimens to prevent atherosclerosis and its related complications.
Methods: This was a prospective, double-blind, randomized, placebo-controlled, clinical trial of patients with T2DM with underlying ischemic heart disease who were receiving metformin and insulin therapy (n = 81). After 12-weeks of additional therapy with either dapagliflozin (n = 40) or placebo (n = 41), systemic endothelial function was evaluated by change in flow-mediated dilation (ΔFMD), change in nitroglycerin-mediated dilation (ΔNMD) and surrogate markers including intercellular adhesion molecule 1 (ICAM-1), endothelial nitric oxide synthase (eNOS), high-sensitivity C-reactive protein (hs-CRP), and lipoprotein(a) (Lp[a]). Glycemic and lipid profiles were also measured.
Results: The dapagliflozin group demonstrated significant reductions of hemoglobin A1c (HbA1c) and fasting blood glucose (FBG) compared to the placebo group (ΔHbA1c -0.83 ± 1.47% vs -0.16 ± 1.25%, P = 0.042 and ΔFBG vs -0.73 ± 4.55 mmol/L vs -1.90 ± 4.40 mmol/L, P = 0.015, respectively). The placebo group showed worsening of ΔFMD while the dapagliflozin group maintained similar measurements pre- and posttherapy (P = not significant). There was a reduction in ICAM-1 levels in the dapagliflozin group (-83.9 ± 205.9 ng/mL, P < 0.02), which remained unchanged in the placebo group (-11.0 ± 169.1 ng/mL, P = 0.699). Univariate correlation analysis revealed a significant negative correlation between HbA1c and ΔFMD within the active group.
Conclusion: A 12-week therapy with dapagliflozin, in addition to insulin and metformin therapies, in high-risk patients resulted in significant reductions in HbA1c, FBG, and surrogate markers of the endothelial function. Although the dapagliflozin group demonstrated a significant association between reduction in HbA1c and improvement in FMD, there was no significant difference in FMD between the 2 groups.
METHODS: Seven hundered fifty five individuals from specialist clinics and community health screenings with LDL-c level ≥ 4.0 mmol/L were selected and diagnosed as FH using the DLCC, the SB Register criteria, the US MEDPED and the JFHMC. The sensitivity, specificity, efficiency, positive and negative predictive values of individuals screened with the SB register criteria, US MEDPED and JFHMC were assessed against the DLCC.
RESULTS: We found the SB register criteria identified more individuals with FH compared to the US MEDPED and the JFHMC (212 vs. 105 vs. 195; p
Materials and Methods: This was a cross-sectional study involving patients aged between 18 and 65 years diagnosed with T2DM with IHD (n = 150). Ultrasonography of the abdomen to determine NAFLD severity category and CIMT measurements was performed by two independent radiologists. NAFLD was graded according to the severity of steatosis (NAFLD-3, NAFLD-2, NAFLD-1, and NAFLD-0). Comparison between different stages of NAFLD (NAFLD-3, NAFLD-2, NAFLD-1, and NAFLD-0) was analyzed using Chi-square and analysis of variance tests for categorical and continuous variables, respectively.
Results: The prevalence of NAFLD was 71% (n = 107). NAFLD-1 was detected in 39% of the patients, 32% had NAFLD-2, no patients with NAFLD-3, and 29% had non-NAFLD. There were no patients with NAFLD-2 having higher systolic and diastolic blood pressure, weight, body mass index, waist circumference, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Glycated hemoglobin (HbA1c) concentration was highest within the NAFLD-2. NAFLD-2 showed higher mean CIMT. Every 1% rise in HbA1c for patients with NAFLD significantly increases the CIMT by 0.03 mm (95% CI: 0.009, 0.052, P = 0.006).
Conclusion: These findings suggest additional atherosclerotic risks within the NAFLD-2 group with significantly higher HbA1c and CIMT compared to the NAFLD-1 and NAFLD-0 groups. It is, therefore, vital to incorporate stricter glycemic control among patients with T2DM and IHD with moderate NAFLD as part of atherosclerotic risk management strategy.