An intense global collaborative effort under the leadership of the Steering Committee of the Filariasis Scientific Working Group of the Tropical Diseases Research Programme, World Health Organization, has brought together researchers, pharmaceutical chemists and clinicians in the development and search for antifilarial compounds which are more effective and more convenient to administer than diethylcarbamazine citrate, the current drug of choice for lymphatic filariasis. The Brugia spp.-rodent model has been used extensively for the primary screening and B. pahangi infections in the dog or cat for the secondary screening, of potential filaricides. Recently, the leaf-monkey (Presbytis spp.) infected with subperiodic B. malayi or Wuchereria kalimantani has been used for the tertiary evaluation and pharmacokinetic studies of compounds which have shown effectiveness in the primary and secondary screens. Both P. cristata and P. melalophos are extremely susceptible to subperiodic B. malayi infection, but the former is a better host as a higher peak microfilaremia and adult worm recovery rate were obtained. Although more than 30 potential filaricides have been evaluated in the tertiary screen, only a few compounds have shown some promise against lymphatic filariasis. CGP 20376, a 5-methoxyl-6-dithiocarbamic-S-(2-carboxy-ethyl) ester derivative of benzothiazole, had complete adulticidal and microfilaricidal activities against the parasite at a single oral dose of 20 mg kg-1. However, as the compound or its metabolites caused hepatotoxicity, its clinical use in the present formulation is not recommended.(ABSTRACT TRUNCATED AT 250 WORDS)
Onchocerca dewittei n. sp. was collected from a wild Boar at the metatarse level (tendons and subcutaneous connective tissue); it can be differentiated from other species by the female cuticle showing straight ridges which overlap in the lateral fields, and by its relatively thick microfilaria (length 228-247 mu and width 6-7 mu). This suidean Onchocerca displays some primitive characters such as straight ridges and persistency of ten pairs of caudal papillae in the male; but as a whole this species is undoubtedly more highly evolved than O. raillieti Bain, Müller and coll., 1976, a parasite of Equidae.
Western blot analysis of infective larvae (L3) antigen of Brugia malayi were performed on 200 sera from six groups of individuals: 36 samples from B. malayi microfilaremic individuals; 10 samples from individuals with elephantiasis; 50 and 20 samples from amicrofilaremic individuals in a B. malayi endemic area with no anti-filarial IgG4 antibodies (towards microfilaria and adult worm antigens) and samples with high titres of the anti-filarial IgG4 antibodies respectively; 50 samples from non-endemic normals and 34 samples from geohelminth-infected individuals. After protein transfer, PVDF membrane strips were successively incubated with blocking solution, human sera, monoclonal anti-human IgG4 antibody-HRP and developed with luminol chemiluminescence substrate. 28/36 (78%), 1/10 (10%) and 16/20(80%) of sera from individuals with microfilariae, elephantiasis and amicrofilaremic individuals with high titers of anti-filarial IgG4 antibodies respectively recognized L3 antigenic epitopes; the dominant and consistent antigenic bands were of approximately MW 43 kDa, 14 kDa, 15 kDa and 59 kDa. The rest of the sera were unreactive. This study showed that microfilaremics may or may not mount a notable antibody response to somatic L3 antigens, thus lending evidence that antibody response to this antigen is not protective against establishment of Brugia malayi infection.