Displaying all 8 publications

Abstract:
Sort:
  1. Balasbaneh AT, Ramli MZ
    Environ Sci Pollut Res Int, 2020 Dec;27(34):43186-43201.
    PMID: 32734541 DOI: 10.1007/s11356-020-10141-3
    In recent years, off-site volumetric construction has been promoted as a viable strategy for improving the sustainability of the construction industry. Most prefabricated prefinished volumetric construction (PPVC) structures are composed of either steel or concrete; thus, it is imperative to carry out life cycle assessments (LCAs) for both types of structures. PPVC is a method by which free-standing volumetric modules-complete with finishes for walls, floors, and ceilings-are prefabricated and then transferred and erected on-site. Although many studies have examined these structures, few have combined economic and environmental life cycle analyses, particularly for prefinished volumetric construction buildings. The purpose of this study is to utilize LCA and life cycle cost (LCC) methods to compare the environmental impacts and costs of steel and concrete PPVCs "from cradle to grave." The results show that steel necessitates higher electricity usage than concrete in all environmental categories, while concrete has a higher emission rate. Steel outperforms concrete by approximately 37% in non-renewable energy measures, 38% in respiratory inorganics, 43% in land occupation, and 40% in mineral extraction. Concrete, on the other hand, performs 54% better on average in terms of measures adopted for greenhouse gas (GHG) emissions. Steel incurs a higher cost in the construction stage but is ultimately the more economical choice, costing 4% less than concrete PPVC owing to the recovery, recycling, and reuse of materials. In general, steel PPVC exhibits better performance, both in terms of cost and environmental factors (excluding GHG emissions). This study endeavors to improve the implementation and general understanding of PPVC.
  2. Azman MA, Ramli MZ, Che Othman SF, Shafiee SA
    Mar Pollut Bull, 2021 Sep;170:112630.
    PMID: 34146861 DOI: 10.1016/j.marpolbul.2021.112630
    This study investigated the accumulation of debris at four sites, namely, Gebeng, Batu Hitam, Cherok Paloh, and Air Leleh, along the Pahang coastline, Peninsular Malaysia from March 2019 to February 2020. Plastic was the dominant debris (86.1%) and followed by cloth/fabric-based debris (6.0%), processed lumber debris (3.3%), rubber (2.7%), glass (1.5%), and metal (0.4%). The land-based debris (82.0%) was the major source of the deposition of marine waste. A statistically significant relationship was found between the seasonal variation and marine debris density in tidal and seasonal current along the Pahang coastline. In general, the Northeast Monsoon season had a higher amount of debris than the Southwest Monsoon season.
  3. Balasbaneh AT, Yeoh D, Ramli MZ, Valdi MHT
    PMID: 35098474 DOI: 10.1007/s11356-022-18647-8
    With the growth of the number of old buildings in urban cities, there is an imperative demand for retrofitting those buildings to minimize their energy consumption and maximize their sustainability. This article seeks to provide a multi-criteria assessment of different retrofitting scenarios in the Malaysian context, focusing replacement of windows. Four different criteria assessed operation energy usage, global warming potential (GWP) emission, embodied energy, and the cost of each alternative. Life cycle analysis is used for each scenario using the Energy Plus software program to estimate the energy demand. The preliminary result showed that a louvered window is unsuitable for operational energy usage compared to other options. In embodied energy and GWP, double-glazing shows an optimal choice by 532 MJ kg/m2 and 101 kg/M2 CO2 between the other two alternatives for retrofitting. However, in the operational energy category, triple glazing has the best performance by 1.06 kW/a day. Finally, comparing the cost of each other options, plenum windows have the lowest rate by 825 kg/M2 MYR. Thus, multi-criteria decision-making (MCDM) is used to select the most sustainable window for buildings. The result shows that the best option is a double-glazing window, followed by a plenum window. This study revealed the requirement for utilization of MCDM handles to guarantee the correct choice of design strategies for the best decision.
  4. Mohammed Isa NA, Ramli MZ, Che Othman SF, Yusof MZ
    Nat Hazards (Dordr), 2021;107(1):873-887.
    PMID: 33612968 DOI: 10.1007/s11069-021-04613-z
    Rip currents are one of the coastal hazards that put Malaysian beachgoers in a risky position. Most of the drowning accidents that occur at beaches worldwide are closely associated with this phenomenon. Research on rip currents is needed to build an effective measuring tool to overcome these issues. However, to date, research on rip currents is mainly focused on its physical aspects, commonly concentrating on the processes that influence and relate to the rips' generation. As an effort to minimize the negative consequences exerted by the rips, there is an urgent need to enhance the rip-related research in the social sciences field. Comprehensive research that includes all fields might produce more beneficial and reliable information. Therefore, this study intends to examine the level of public understanding of rip currents and beach safety knowledge of the Teluk Cempedak Beach. A questionnaire comprising 5 sections and 31 questions was developed as the primary tool in this study. A total of 60 beachgoers have been surveyed for this preliminary study through a questionnaire to investigate their demographic profile, frequency of visiting the beach, swimming ability, and their knowledge of rip currents and beach safety. The results show that the beachgoers have poor knowledge of rip currents. Conversely, they are observed to have higher beach safety knowledge. Also, the findings help in filling the research gaps of this study in terms of the instrument used for the data collection procedure. Above all, an extension of this study may contribute to the development of beneficial tools in assessing public knowledge on beach safety and rip currents throughout Malaysian beaches.

    Supplementary information: The online version contains supplementary material available at (10.1007/s11069-021-04613-z).

  5. Zakaria N, Ramli MZ, Ramasamy K, Meng LS, Yean CY, Banga Singh KK, et al.
    Anal Biochem, 2018 08 15;555:12-21.
    PMID: 29879415 DOI: 10.1016/j.ab.2018.05.031
    A miniaturized biosensing platform, based on monoclonal amyloid-beta antibodies (mAβab) that were immobilized on a disc-shaped platinum/iridium (Pt/Ir) microelectrode surface coupled with an impedimetric signal transducer, was developed for the label-free and sensitive detection of amyloid-beta peptide fragment 1-40 (Aβ40); a reliable biomarker for early diagnosis of Alzheimer's disease (AD). A Pt/Ir microelectrode was electropolymerized with poly (ortho-phenylenediamine), a conducting free amine-containing aromatic polymer; followed by crosslinking with glutaraldehyde for subsequent coupling of mAβab on the microelectrode surface. This modification strategy efficiently improved the impedimetric detection performance of Aβ40 in terms of charge transfer resistance (∼400-fold difference) and normalized impedance magnitude percentage change (∼40% increase) compared with a passive adsorption-based immobilization method. The sensitivity of the micro-immunosensing assay was found to be 1056 kΩ/(pg/mL)/cm2 and the limit of detection was found to be 4.81 pg/mL with a dynamic range of 1-104 pg/mL (R2 = 0.9932). The overall precision of the assay, as measured by relative standard deviation, ranged from 0.84 to 5.15%, demonstrating its reliability and accuracy; while in respect to assay durability and stability, the immobilized mAβab were able to maintain 80% of their binding activity to Aβ40 after incubation for 48 h at ambient temperature (25 °C). To validate the practical applicability, the assay was tested using brain tissue lysates prepared from AD-induced rats. Results indicate that the proposed impedimetric micro-immunosensing platform is highly versatile and adaptable for the quantitative detection of other disease-related biomarkers.
  6. Yahya SH, Al-Lolage FA, Mahat MM, Ramli MZ, Syamsul M, Falina S, et al.
    RSC Adv, 2023 Nov 07;13(47):32918-32926.
    PMID: 38025850 DOI: 10.1039/d3ra05592b
    The increasing levels of carbon dioxide (CO2) in the atmosphere may dissolve into the ocean and affect the marine ecosystem. It is crucial to determine the level of dissolved CO2 in the ocean to enable suitable mitigation actions to be carried out. The conventional electrode materials are expensive and susceptible to chloride ion attack. Therefore, there is a need to find suitable alternative materials. This novel study investigates the electrochemical behaviour of dissolved CO2 on roughened molybdenum (Mo) microdisk electrodes, which were mechanically polished using silicon carbide paper. Pits and dents can be seen on the electrode surface as observed using scanning electron microscopy. X-ray diffraction spectra confirm the absence of abrasive materials and the presence of defects on the electrode surface. The electrochemical surface for the roughened electrodes is higher than that for the smoothened electrodes. Our findings show that the roughened electrodes exhibit a significantly higher electrocatalytic activity than the smoothened electrodes for the reduction of dissolved CO2. Our results reveal a linear relationship between the current and square root of scan rate. Furthermore, we demonstrate that saturating the electrolyte solution with CO2 using a bubbling time of just 20 minutes at a flow rate of 5 L min-1 for a 50 mL solution is sufficient. This study provides new insights into the electrochemical behaviour of dissolved CO2 on roughened Mo microdisk electrodes and highlights their potential as a promising material for CO2 reduction and other electrochemical applications. Ultimately, our work contributes to the ongoing efforts to mitigate the effects of climate change and move towards a sustainable future.
  7. Dong WS, Ariffin EH, Saengsupavanich C, Mohd Rashid MA, Mohd Shukri MH, Ramli MZ, et al.
    J Environ Manage, 2023 May 01;333:117391.
    PMID: 36774836 DOI: 10.1016/j.jenvman.2023.117391
    The complexity of the coastal environment and the advent of climate change cause coastal erosion, which is incontrovertibly a significant concern worldwide, including Peninsular Malaysia, where, the coast is threatened by severe erosion linked to anthropogenic factors and monsoonal wind-driven waves. Consequently, the Malaysian government implemented a mitigation plan using several coastal defence systems to overcome the coastal erosion problem. This study assesses coastal erosion management strategies along a monsoon-dominated coasts by evaluating the efficacy of coastal protection structures against the coast. To this end, we analysed 244 km of the coastline of Terengganu, a federal state located on the east coast of Peninsular Malaysia. Due to a higher frequency of storms and the ensuing inception of high wave energy environments during the northeast monsoon (relative to southwest monsoon), the study area is the most impacted region in Malaysia with regard to coastal erosion. Fifty-five (55) coastal defence structures were detected along the Terengganu coastline. The Digital Shoreline Analysis System (DSAS) was utilised to compute changes in the rate statistics for various historical shoreline positions along the Terengganu coast to assess the efficacy of the defence structures. Additionally, this study acquired the perception of the existing coastal management strategies through an interview session with the concerned stakeholders. The rate statistics revealed the effectiveness and impact of the coastal defence structure on the coastline. Assessing the functionality of the coastal defence structures shed light on the present scenario of coastal erosion management. Greater efficacy and lower impact of coastal defence structures are prescribed for coastal erosion management strategies across the monsoon-dominated coast.
  8. Dong WS, Ismailluddin A, Yun LS, Ariffin EH, Saengsupavanich C, Abdul Maulud KN, et al.
    Heliyon, 2024 Feb 29;10(4):e25609.
    PMID: 38375273 DOI: 10.1016/j.heliyon.2024.e25609
    Climate change alters the climate condition and ocean environment, leading to accelerated coastal erosion and a shift in the coastline shape. From previous studies, Southeast Asia's coastal region is suffering from severe coastal erosion. It is most sensitive and vulnerable to climate change, has broad and densely populated coastlines, and is under ecological pressure. Efforts to systematically review these studies are still insufficient despite many studies on the climate change linked to coastal erosion, the correlation between coastal erosion and coastal communities, and the adaptative measures to address these issues and their effectiveness in Southeast Asia. Therefore, by analyzing the existing literature, the purpose of this review was to bridge the knowledge gap and identify the link between climate change and coastal erosion in Southeast Asia in terms of sea-level rise, storm surge, and monsoon patterns. The RepOrting standards for Systematic Evidence Syntheses (ROSES) guided the study protocol, including articles from the Scopus and Dimension databases. There were five main themes considered: 1) climate change impact, 2) contributing factors to coastal erosion, 3) coastal erosion impact on coastal communities, 4) adaptation measure and 5) effectiveness of adaptation measure using thematical analysis. Subsequently, nine sub-themes were produced from the themes. Generally, in Southeast Asia, coastal erosion was reflected by the rising sea level. Throughout reviewing past literature, an interesting result was explored. Storm surges also had the potential to affect coastal erosion due to alterations of the atmospheric system and seasonal monsoon as the result of climate change. Meanwhile, an assessment of current erosion control strategies in relation to the relative hydrodynamic trend was required to avoid the failure of defence structures and the resulting danger to coastal communities. Systematically reviewing the existing literature was critical, hence it could significantly contribute to the body of knowledge. It provides valuable information for interested parties, such as authorities, the public, researchers, and environmentalists, while comprehending existing adaptation practices. This kind of review could strategize adaptation and natural resource management in line with coastal communities' needs, abilities, and capabilities in response to environmental and other change forms.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links