Displaying all 6 publications

Abstract:
Sort:
  1. Rashid SS, Liu YQ
    Sci Total Environ, 2021 Feb 20;756:143849.
    PMID: 33248794 DOI: 10.1016/j.scitotenv.2020.143849
    The occurrence of various micropollutants such as pharmaceuticals personal care products, endocrine disrupting chemicals (PPCPs/EDCs) and metals in municipal wastewater, and their poor removal efficiencies can lead to toxicity impact on humans, and freshwater and terrestrial ecosystems. Life cycle assessment is an efficient and effective tool to evaluate the environmental impact of wastewater treatment plants, but guidelines for toxicity assessment are lacking due to the complexity. This study aims to evaluate both life cycle inventory by including metals and PEC, and life cycle toxicity assessment (LCIA) methods namely CML-IA, Recipe, USEtox, EDIP 2003 and IMPACT 2002+ in midpoint category with a large centralised wastewater treatment plant in Malaysia as a case study. The removal efficiencies of metals and PPCPs/EDCs in the wastewater ranged from 9% to 99% and no clear patterns were found about occurrence and removal efficiencies of metals and PPCPs/EDCs in developing and developed countries. The inclusion of metals and PPCPs/EDCs in effluent resulted in 76% increase in freshwater ecotoxicity potential (FEP) and 88% increase in terrestrial ecotoxicity potential (TEP) while only 4% increase in human toxicity potential (HTP). The results indicate the importance of including direct emissions such as metals and PPCPs/EDCs even in low-strength municipal wastewater for environmental toxicity assessment. The comparison of five LCIA methods suggests that HTP assessment is more challenging due to inconsistency between five LCIA methods while CML-IA, Recipe, and IMPACT 2002+ achieved consistent human toxicity and ecotoxicity assessment results in the WWTP. The results highlight the importance of sampling and inclusion of metals and PPCPs/EDCs data especially prioritised micropollutants for life cycle toxicity assessment and recommends LCIA methods for ecotoxicity assessment of WWTPs in the current scientific development situation on toxicity studies, which can provide guidance to researchers for life cycle toxicity assessment of wastewater treatment.
  2. Rashid SS, Liu YQ, Zhang C
    Sci Total Environ, 2020 Dec 20;749:141465.
    PMID: 32827824 DOI: 10.1016/j.scitotenv.2020.141465
    Although nutrient removal and recovery from municipal wastewater are desirable to protect phosphorus resource and water-bodies from eutrophication, it is unclear how much environmental and economic benefits and burdens it might cause. This study evaluated the environmental and economic life cycle performance of three different upgraded Processes A, B and C with commercially available technologies for nutrient removal and phosphorus recovery based on an existing Malaysian wastewater treatment plant with a sequencing batch reactor technology and diluted municipal wastewater. It is found that the integration of nutrient removal, phosphorus recovery and electricity generation in all upgraded processes reduced eutrophication potential by 62-76%, and global warming potential by 7-22%, which, however, were gained at the cost of increases in human toxicity, acidification, abiotic depletion (fossil fuel) and freshwater ecotoxicity potentials by an average of 23%. New technologies for nutrient removal and phosphorus recovery are thus needed to achieve holistic rather than some environmental benefits at the expense of others. In addition, the study on two different functional units (FU), i.e. per m3 treated wastewater and per kg struvite recovered, shows that FU affected environmental assessment results, but the upgraded Process C had the least overall environmental burden with either of FUs, suggesting the necessity to use different functional units when comparing and selecting different technologies with two functions such as wastewater treatment and struvite production to confirm the best process configuration. The total life cycle costs of Processes A, B and C were 10.7%, 29.8% and 28.1%, respectively, higher than the existing process due to increased capital and operating costs. Therefore, a trade-off between environmental benefits and cost has to be balanced for technology selection or new integrated technologies have to be developed to achieve environmentally sustainable wastewater treatment economically.
  3. Murugan AC, Karim MR, Yusoff MB, Tan SH, Asras MF, Rashid SS
    Pharm Biol, 2015 Aug;53(8):1087-97.
    PMID: 25630358 DOI: 10.3109/13880209.2014.959615
    CONTEXT: Polyphenol-rich marine macroalgae are gaining dietary importance due to their influence over diabetes mellitus and the role as a vital source of high-value nutraceuticals. Their assorted beneficial effects on human health include competitive inhibition of digestive enzymes, varying the activity of hepatic glucose-metabolizing enzymes, lowering the plasma glucose levels, and lipid peroxidation, delaying the aging process.

    OBJECTIVE: In this paper, we review the health beneficial effects of polyphenols and phlorotannins from brown seaweeds with special emphasis on their inhibitory effects on carbohydrate-metabolizing enzymes.

    METHODS: A survey of literature from databases such as Sciencedirect, Scopus, Pubmed, Springerlink, and Google Scholar from the year 1973 to 2013 was done to bring together the information relating to drug discovery from brown seaweeds as a source for diabetes treatment.

    RESULTS: Over the past two decades, 20 different bioactive polyphenols/phlorotannins have been isolated and studied from 10 different brown algae. Discussion of the positive effect on the inhibition of enzymes metabolizing carbohydrates in both in vitro and in vivo experiments are included.

    CONCLUSION: Despite the recent advancements in isolating bioactive compounds from seaweeds with potential health benefit or pharmaceutical behavior, studies on the polyphenol effectiveness on glucose homeostasis in human beings are very few in response to their functional characterization. Added research in this area is required to confirm the close connection of polyphenol rich seaweed-based diet consumption with glucose homeostasis and the exciting possibility of prescribing polyphenols to treat the diabetes pandemic.

  4. Azad AK, Laboni FR, Rashid H, Ferdous S, Rashid SS, Kamal N, et al.
    Nat Prod Res, 2020 Aug;34(16):2394-2397.
    PMID: 30475649 DOI: 10.1080/14786419.2018.1538216
    The key purpose of this experiment was to evaluate the thrombolytic, antioxidant, membrane stabilizing and antimicrobial potentials of crude ethanol extracts (CEE) of whole plant, organic and aqueous soluble fractions (OF & AQSF). CEE showed the highest (44.63%) clot lysis activity compared to streptokinase (64.35%). In DPPH study, petroleum ether soluble fraction (PSF) has exhibited IC50 of 18.83 μg/mL while the standard ascorbic acid was 2.48 µg/mL. AQSF profoundly inhibited the lysis of erythrocytes (66.20%) which was insignificantly different (p > 0.05) to acetylsalicylic acid (71.98%), the reference. However, AQSF showed a significantly stronger level of protection against heat-induced hemolysis (64.80%) as compared with the acetylsalicylic acid (78.90%). CEE, OF and AQSF have displayed reasonable growth of inhibition of tested bacteria compared to negative control and standard drug (77.50 mg of GAE/g).
  5. Mftah A, Alhassan FH, Al-Qubaisi MS, El Zowalaty ME, Webster TJ, Sh-Eldin M, et al.
    Int J Nanomedicine, 2015;10:765-74.
    PMID: 25632233 DOI: 10.2147/IJN.S66058
    Nanoparticle sulphated zirconia with Brønsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600°C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.9-1,000 μg/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brønsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications.
  6. Sarkar SM, Rashid SS, Karim KMR, Mustapha SNH, Lian YM, Zamri N, et al.
    J Nanosci Nanotechnol, 2019 05 01;19(5):2856-2861.
    PMID: 30501791 DOI: 10.1166/jnn.2019.16289
    Corn-cobs are an agro-industrial waste and composed of cellulose mostly. In this study cellulose was isolated from the waste corn-cobs and modified to polymeric hydroxamic acid palladium complex 1 and characterized by using a variety of spectroscopic methods such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The complex 1 exhibited high catalytic activity towards Suzuki and Heck coupling reactions of activated and deactivated aryl halides to give the respective coupling products with high yield. Moreover, the complex 1 was recovered and recycled five times with no considerable loss of catalytic overall performance.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links