Displaying all 12 publications

Abstract:
Sort:
  1. Yavarzadeh M, Anwar F, Saadi S, Saari N
    Enzyme Microb Technol, 2023 Sep;169:110282.
    PMID: 37393814 DOI: 10.1016/j.enzmictec.2023.110282
    Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.
  2. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM
    Biotechnol Adv, 2014 12 12;33(1):80-116.
    PMID: 25499177 DOI: 10.1016/j.biotechadv.2014.12.003
    The growing momentum of several common life-style diseases such as myocardial infarction, cardiovascular disorders, stroke, hypertension, diabetes, and atherosclerosis has become a serious global concern. Recent developments in the field of proteomics offering promising solutions to solving such health problems stimulates the uses of biopeptides as one of the therapeutic agents to alleviate disease-related risk factors. Functional peptides are typically produced from protein via enzymatic hydrolysis under in vitro or in vivo conditions using different kinds of proteolytic enzymes. An array of biological activities, including antioxidative, antihypertensive, antidiabetic and immunomodulating has been ascribed to different types of biopeptides derived from various food sources. In fact, biopeptides are nutritionally and functionally important for regulating some physiological functions in the body; however, these are yet to be extensively addressed with regard to their production through advance strategies, mechanisms of action and multiple biological functionalities. This review mainly focuses on recent biotechnological advances that are being made in the field of production in addition to covering the mode of action and biological activities, medicinal health functions and therapeutic applications of biopeptides. State-of-the-art strategies that can ameliorate the efficacy, bioavailability, and functionality of biopeptides along with their future prospects are likewise discussed.
  3. Saadi S, Ghazali HM, Saari N, Abdulkarim SM
    Biophys Chem, 2021 06;273:106565.
    PMID: 33780688 DOI: 10.1016/j.bpc.2021.106565
    Therapeutic peptides derived proteins with alpha-reconformation states like antibody shape have shown potential effects in combating terrible diseases linked with earlier signs of angiogensis, mutagenesis and transgenesis. Alpha reconformation in material design refers to the folding of the peptide chains and their transitions under reversible chemical bonds of disulfide chemical bridges and further non-covalence lesions. Thus, the rational design of signal peptides into alpha-helix is intended in increasing the defending effects of peptides into cores like adjuvant antibiotic and/or vaccines. Thereby, the signal peptides are able in displaying multiple eradicating regions by changing crystal-depositions and deviation angles. These types of molecular structures could have multiple advantages in tracing disease syndromes and impurities by increasing the host defense against the fates of pathogens and viruses, eventually leading to the loss in signaling by increasing peptide susceptibility levels to folding and unfolding and therefore, formation of transgenic peptide models. Alpha reconformation peptides is aimed in triggering as well as other regulatory functions such as remodulating metabolic chain disorders of lipolysis and glucolysis by increasing the insulin and leptin resistance for best lipid storages and lipoprotein density distributions.
  4. Saadi S, Saari N, Abdulkarim MS, Ghazali HM, Anwar F
    J Control Release, 2018 03 28;274:93-101.
    PMID: 29031897 DOI: 10.1016/j.jconrel.2017.10.011
    Cell impurities are an emerging nucleating molecular barriers having the capability in disordering the metabolic chain reactions of proteolysis, glycolysis and lipolysis. Their massive effects induced by copolymer crystal growth in compaction with metal and mineral transients are extended as well as in damaging DNA and mRNA structure motif and other molecular assembly e.g. histones structure unites. Their polycrystalline packing modes, polydispersity and their tendency to surface and interface adhesion prompted us in structuring scaffold biomaterials enriched with biopeptides, layered by phospho-glycerides ester-forms. The interface tension of the formed map is flexible and dependent to the surface exposure and its collapse modes to the surrounding molecular ligands. Thus, the attempts in increasing surface exposure e.g. the viscoelastic of structured lipopeptides and types of formed network structures interplays an extra- conjugating biomolecules having a least cytotoxicity effects to cells constituents. Disulfides molecules are selected to be the key regulatory element in rejoining both lipidic and proteic moieties by disordering atoms status via chemical ionization using organic catalyst. The insertion of methionine based peptidic chain at the lateral surfaces of scaffold biomaterials enhances the electron-meta-static motions by raising a molecular disordering status at distinct regions of the map e.g. epimerization into a nonpolar side that helps the chemical conjunction of disulfide groups with the esterified phosphoglycerides mono-layers. These effects in turn are accomplished by the formation of meso-sphere nonpolar- vesicles. The oxidation of disulfide group would alter the ordering of initial molecules by raising a newly molecular disorders to the map with high polarity to surface regions. In the same time indicates a continuation in the crystallization growth factor via a low chemical lesions between the impurities and a supersaturation in the intra-atomic distances with maximum cross linking to the deformed ligand with scaffold biomaterials.
  5. Saadi S, Saari N, Ghazali HM, Abdulkarim MS
    Curr Res Food Sci, 2022;5:207-221.
    PMID: 35106485 DOI: 10.1016/j.crfs.2022.01.011
    The inactivation of antinutritional factors, protease inhibitors within winged bean protein was induced by two respective method treatments. The physical method based on steam vapor that was conducted using an autoclave and chemical method consisting on pH-gradients of buffer solutions prepared at respective acidic pH, neutral pH and alkaline pH ranges. The activity of remaining protease inhibitors of bowman birk inhibitor (BBI), and kunitz-trypsin inhibitor (KTI) after and before treatments was enzymatically confirmed using relevant antagonistic trypsin and combined trypsin-α-chymotrypsin digests. The resulting molecular assembly indicating an interval molecular relaxation range of °0.16 < °DA < °0.2 corresponding to reconformation in protein units with volume-mass changes of -2.17 < ∂v' < +2.17 and with denaturation/unfolding efficiency based on heat capacity ΔCp of 36.36 < DE/UF% < 54.67. These structural changes had a great benefit in determining and producing functional protein hydrolysates.
  6. Saadi S, Nacer NE, Saari N, Mohammed AS, Anwar F
    J Biotechnol, 2024 Mar 10;383:1-12.
    PMID: 38309588 DOI: 10.1016/j.jbiotec.2024.01.013
    The attempt of this review article is to determine the impact of nuclear and mitochondrial damages on the propagation of cancer incidences. This review has advanced our understanding to altered genes and their relevant cancerous proteins. The progressive raising effects of free reactive oxygen species ROS and toxicogenic compounds contributed to significant mutation in nuclear and mitochondrial DNA where the incidence of gastric cancer is found to be linked with down regulation of some relevant genes and mutation in some important cellular proteins such as AMP-18 and CA-11. Thereby, the resulting changes in gene mutations induced the apparition of newly polymorphisms eventually leading to unusual cellular expression to mutant proteins. Reduction of these apoptotic growth factors and nuclear damages is increasingly accepted by cell reactivation effect, enhanced cellular signaling and DNA repairs. Acetylation, glycation, pegylation and phosphorylation are among the molecular techniques used in DNA repair for rectifying mutation incidences. In addition, the molecular labeling based fluorescent materials are currently used along with the bioconjugating of signal molecules in targeting disease translocation site, particularly cancers and tumors. These strategies would help in determining relevant compounds capable in overcoming problems of down regulating genes responsible for repair mechanisms. These issues of course need interplay of both proteomic and genomic studies often in combination of molecular engineering to cible the exact expressed gene relevant to these cancerous proteins.
  7. Dahimi O, Rahim AA, Abdulkarim SM, Hassan MS, Hashari SB, Mashitoh AS, et al.
    Food Chem, 2014 Sep 1;158:132-8.
    PMID: 24731324 DOI: 10.1016/j.foodchem.2014.02.087
    The adulteration of edible fats is a kind of fraud that impairs the physical and chemical features of the original lipid materials. It has been detected in various food, pharmaceutical and cosmeceutical products. Differential scanning calorimetry (DSC) is the robust thermo-analytical machine that permits to fingerprint the primary crystallisation of triacylglycerols (TAGs) molecules and their transition behaviours. The aims of this study was to assess the cross-contamination caused by lard concentration of 0.5-5% in the mixture systems containing beef tallow (BT) and chicken fat (CF) separately. TAGs species of pure and adulterated lipids in relation to their crystallisation and melting parameters were studied using principal components analysis (PCA). The results showed that by using the heating profiles the discrimination of LD from BT and CF was very clear even at low dose of less than 1%. Same observation was depicted from the crystallisation profiles of BT adulterated by LD doses ranging from 0.1% to 1% and from 2% to 5%, respectively. Furthermore, CF adulterated with LD did not exhibit clear changes on its crystallisation profiles. Consequently, DSC coupled with PCA is one of the techniques that might use to monitor and differentiate the minimum adulteration levels caused by LD in different animal fats.
  8. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Boo HC, Abdulkarim SM
    Food Chem, 2012 May 1;132(1):603-12.
    PMID: 26434338 DOI: 10.1016/j.foodchem.2011.10.095
    The main goal of the present work was to assess the mechanism of crystallisation, more precisely the dominant component responsible for primary crystal formations and fat agglomerations. Therefore, DSC results exhibited significant effect on temperature transition; peak sharpness and enthalpy at palm stearin (PS) levels more than 40wt.%. HPLC data demonstrated slight reduction in the content of POO/OPO at PS levels less than 40wt.%, while the excessive addition of PS more than 40wt.% increased significantly PPO/POP content. The pNMR results showed significant drop in SFC for blends containing PS less than 40wt.%, resulting in low SFC less than 15% at body temperature (37°C). Moreover, the values of viscosity (η) and shear stress (τ) at PS levels over 40wt.% expressed excellent internal friction of the admixtures. All the data reported indicate that PPO/POP was the major component of primary nucleus developed. In part, the levels of PS should be less than 40wt.%, if these blends are designed to be used for margarine production.
  9. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Abdulkarim SM, Boo HC
    J Food Sci, 2011 Jan-Feb;76(1):C21-30.
    PMID: 21535649 DOI: 10.1111/j.1750-3841.2010.01922.x
    The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine the best level of stearin to impart the required microstructure properties and body to the finished products.
  10. Saadi S, Saari N, Ghazali HM, Abdulkarim SM, Hamid AA, Anwar F
    J Proteomics, 2022 Jan 16;251:104395.
    PMID: 34673267 DOI: 10.1016/j.jprot.2021.104395
    Glutens are potential proteins with multifunctional therapeutic effects. Their covalence network structures with and without protease inhibitors are expected to enhance or to serve further properties and further technological points such as increased bioactive surfaces, gelatinization, gelation and pasting properties. The depletion of the allergic peptide sequences of gluten proteins comprising sometimes protease inhibitors are valid via the enzymatic ingestion using proteolytic enzymes that might enhance these functional and technological processes by producing active peptides having osmoregulation and regular glass transitions, surface activity for coating and encapsulation properties. In addition to further therapeutic functions such as immunoregulatory, antithrombin and opioidal activities, particularly in eradicating most of the free radicals, suppressing diabetes Mellitus II complications and inhibiting angiotensin converting enzyme cardiovascular growth diseases.
  11. Anwar F, Mahrye, Khan R, Qadir R, Saadi S, Gruczynska-Sekowska E, et al.
    Chem Biodivers, 2024 Jul;21(7):e202400500.
    PMID: 38719739 DOI: 10.1002/cbdv.202400500
    The Thymus genus includes various medicinal and aromatic species, cultivated worldwide for their unique medicinal and economic value. Besides, their conventional use as a culinary flavoring agent, Thymus species are well-known for their diverse biological effects, such as antioxidant, anti-fungal, anti-bacterial, anti-viral, anti-tumor, anti-inflammatory, anti-cancer, and anti-hypertensive properties. Hence, they are used in the treatment of fever, colds, and digestive and cardiovascular diseases. The pharmaceutical significance of Thymus plants is due to their high levels of bioactive components such as natural terpenoid phenol derivatives (p-cymene, carvacrol, thymol, geraniol), flavonoids, alkaloids, and phenolic acids. This review examines the phytochemicals, biological properties, functional food, and nutraceutical attributes of some important Thymus species, with a specific focus on their potential uses in the nutra-pharmaceutical industries. Furthermore, the review provides an insight into the mechanisms of biological activities of key phytochemicals of Thymus species exploring their potential for the development of novel natural drugs.
  12. Ranjbarzadeh R, Jafarzadeh Ghoushchi S, Bendechache M, Amirabadi A, Ab Rahman MN, Baseri Saadi S, et al.
    Biomed Res Int, 2021;2021:5544742.
    PMID: 33954175 DOI: 10.1155/2021/5544742
    The COVID-19 pandemic is a global, national, and local public health concern which has caused a significant outbreak in all countries and regions for both males and females around the world. Automated detection of lung infections and their boundaries from medical images offers a great potential to augment the patient treatment healthcare strategies for tackling COVID-19 and its impacts. Detecting this disease from lung CT scan images is perhaps one of the fastest ways to diagnose patients. However, finding the presence of infected tissues and segment them from CT slices faces numerous challenges, including similar adjacent tissues, vague boundary, and erratic infections. To eliminate these obstacles, we propose a two-route convolutional neural network (CNN) by extracting global and local features for detecting and classifying COVID-19 infection from CT images. Each pixel from the image is classified into the normal and infected tissues. For improving the classification accuracy, we used two different strategies including fuzzy c-means clustering and local directional pattern (LDN) encoding methods to represent the input image differently. This allows us to find more complex pattern from the image. To overcome the overfitting problems due to small samples, an augmentation approach is utilized. The results demonstrated that the proposed framework achieved precision 96%, recall 97%, F score, average surface distance (ASD) of 2.8 ± 0.3 mm, and volume overlap error (VOE) of 5.6 ± 1.2%.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links