In this paper, Al-Fe-Si-Zn-Cu (AA8079) matrix composites with several weight percentages of B4C (0, 5, 10, and 15) were synthesized by powder metallurgy (PM). The essential amount of powders was milled to yield different compositions such as AA8079, AA8079-5 wt.%B4C, AA8079-10 wt.%B4C, and AA8079-15 wt.%B4C. The influence of powder metallurgy parameters on properties' density, hardness, and compressive strength was examined. The green compacts were produced at three various pressures: 300 MPa, 400 MPa, and 500 MPa. The fabricated green compacts were sintered at 375 °C, 475 °C, and 575 °C for the time period of 1, 2 and 3 h, respectively. Furthermore, the sintered samples were subjected to X-ray diffraction (XRD) analysis, Energy Dispersive Analysis (EDAX), and Scanning Electron Microscope (SEM) examinations. The SEM examination confirmed the uniform dispersal of B4C reinforcement with AA8079 matrix. Corrosion behavior of the composites samples was explored. From the studies, it is witnessed that the rise in PM process parameters enhances the density, hardness, compressive strength, and corrosion resistance.
The current investigation aims to examine heat transfer as well as entropy generation analysis of Powell-Eyring nanofluid moving over a linearly expandable non-uniform medium. The nanofluid is investigated in terms of heat transport properties subjected to a convectively heated slippery surface. The effect of a magnetic field, porous medium, radiative flux, nanoparticle shapes, viscous dissipative flow, heat source, and Joule heating are also included in this analysis. The modeled equations regarding flow phenomenon are presented in the form of partial-differential equations (PDEs). Keller-box technique is utilized to detect the numerical solutions of modeled equations transformed into ordinary-differential equations (ODEs) via suitable similarity conversions. Two different nanofluids, Copper-methanol (Cu-MeOH) as well as Graphene oxide-methanol (GO-MeOH) have been taken for our study. Substantial results in terms of sundry variables against heat, frictional force, Nusselt number, and entropy production are elaborate graphically. This work's noteworthy conclusion is that the thermal conductivity in Powell-Eyring phenomena steadily increases in contrast to classical liquid. The system's entropy escalates in the case of volume fraction of nanoparticles, material parameters, and thermal radiation. The shape factor is more significant and it has a very clear effect on entropy rate in the case of GO-MeOH nanofluid than Cu-MeOH nanofluid.
The effect of reinforcements and thermal exposure on the tensile properties of aluminium AA 5083-silicon carbide (SiC)-fly ash composites were studied in the present work. The specimens were fabricated with varying wt.% of fly ash and silicon carbide and subjected to T6 thermal cycle conditions to enhance the properties through "precipitation hardening". The analyses of the microstructure and the elemental distribution were carried out using scanning electron microscopic (SEM) images and energy dispersive spectroscopy (EDS). The composite specimens thus subjected to thermal treatment exhibit uniform distribution of the reinforcements, and the energy dispersive spectrum exhibit the presence of Al, Si, Mg, O elements, along with the traces of few other elements. The effects of reinforcements and heat treatment on the tensile properties were investigated through a set of scientifically designed experimental trials. From the investigations, it is observed that the tensile and yield strength increases up to 160 °C, beyond which there is a slight reduction in the tensile and yield strength with an increase in temperature (i.e., 200 °C). Additionally, the % elongation of the composites decreases substantially with the inclusion of the reinforcements and thermal exposure, leading to an increase in stiffness and elastic modulus of the specimens. The improvement in the strength and elastic modulus of the composites is attributed to a number of factors, i.e., the diffusion mechanism, composition of the reinforcements, heat treatment temperatures, and grain refinement. Further, the optimisation studies and ANN modelling validated the experimental outcomes and provided the training models for the test data with the correlation coefficients for interpolating the results for different sets of parameters, thereby facilitating the fabrication of hybrid composite components for various automotive and aerospace applications.
Distilled water and aqueous fullerene nanofluids having concentrations of 0.02, 0.2, and 0.4 vol % and titania (titanium dioxide, TiO2) nanofluids of 0.0002, 0.002, and 0.02 vol % were analyzed for heat transfer characteristics. Quenching mediums were stirred at impeller speeds of 0, 500, 1,000, and 1,500 RPMs in a typical Tensi agitation system. During the quenching process, a metal probe made of ISO 9950 Inconel was used to record the temperature history. The inverse heat conduction method was used to calculate the spatial and temporal heat flux. The nanofluid rewetting properties were measured and matched to those of distilled water. The maximum mean heat flux was 3.26 MW/m2, and the quickest heat extraction was 0.2 vol % fullerene nanofluid, according to the results of the heat transfer investigation.
This article presents the outcomes of a research study focused on optimizing the performance of soybean biofuel blends derived from soybean seeds specifically for urban medium-duty commercial vehicles. The study took into consideration elements such as production capacity, economics and assumed engine characteristics. For the purpose of predicting performance, combustion and emission characteristics, an artificial intelligence approach that has been trained using experimental data is used. At full load, the brake thermal efficiency (BTE) dropped as engine speed increased for biofuel and diesel fuel mixes, but brake-specific fuel consumption (BSFC) increased. The BSFC increased by 11.9% when diesel compared to using biofuel with diesel blends. The mixes cut both maximum cylinder pressure and NO x emissions. The biofuel-diesel fuel proved more successful, with maximum reduction of 9.8% and 22.2 at rpm, respectively. The biofuel and diesel blend significantly improved carbon dioxide ( CO 2 ) and smoke emissions. The biofuel blends offer significant advantages by decreeing exhaust pollutants and enhancing engine performance.
Covid-19 has given one positive perspective to look at our planet earth in terms of reducing the air and noise pollution thus improving the environmental conditions globally. This positive outcome of pandemic has given the indication that the future of energy belong to green energy and one of the emerging source of green energy is Lithium-ion batteries (LIBs). LIBs are the backbone of the electric vehicles but there are some major issues faced by the them like poor thermal performance, thermal runaway, fire hazards and faster rate of discharge under low and high temperature environment,. Therefore to overcome these problems most of the researchers have come up with new methods of controlling and maintaining the overall thermal performance of the LIBs. The present review paper mainly is focused on optimization of thermal and structural design parameters of the LIBs under different BTMSs. The optimized BTMS generally demonstrated in this paper are maximum temperature of battery cell, battery pack or battery module, temperature uniformity, maximum or average temperature difference, inlet temperature of coolant, flow velocity, and pressure drop. Whereas the major structural design optimization parameters highlighted in this paper are type of flow channel, number of channels, length of channel, diameter of channel, cell to cell spacing, inlet and outlet plenum angle and arrangement of channels. These optimized parameters investigated under different BTMS heads such as air, PCM (phase change material), mini-channel, heat pipe, and water cooling are reported profoundly in this review article. The data are categorized and the results of the recent studies are summarized for each method. Critical review on use of various optimization algorithms (like ant colony, genetic, particle swarm, response surface, NSGA-II, etc.) for design parameter optimization are presented and categorized for different BTMS to boost their objectives. The single objective optimization techniques helps in obtaining the optimal value of important design parameters related to the thermal performance of battery cooling systems. Finally, multi-objective optimization technique is also discussed to get an idea of how to get the trade-off between the various conflicting parameters of interest such as energy, cost, pressure drop, size, arrangement, etc. which is related to minimization and thermal efficiency/performance of the battery system related to maximization. This review will be very helpful for researchers working with an objective of improving the thermal performance and life span of the LIBs.
This study was based on the experimental performance evaluation of a wood polymer composite (WPC) that was synthesized by incorporating untreated and treated rice husk (RH) fibers into a polypropylene random copolymer matrix. The submicron-scale RH fibers were alkali-treated to modify the surface and introduce new functional groups in the WPC. A compatibilizer (maleic anhydride) and a thermos-mechanical properties modifier (polypropylene grafted with 30 % glass fiber) were used in the WPC. The effects of untreated and treated RH on the WPC panels were studied using FESEM, FTIR, and microscope images. A pin-on-disk setup was used to investigate the bulk tribological properties of PPRC and WPC. The complex relationship between the friction coefficient of different loading of RH fibers in the WPC, as a function of sliding distance, was analyzed along with the temperature and morphology of the surface. It was observed that untreated RH acted as a friction modifier, while treated RH acted as a solid lubricant. Microhardness was calculated using the QCSM module on nanoindentation. It was found that untreated RH led to an increase in microhardness, while treated RH caused a decrease in hardness compared to PPRC.