Displaying all 9 publications

Abstract:
Sort:
  1. Salhin A, Abdul Razak N, Rahman IA
    PMID: 21583090 DOI: 10.1107/S1600536809016225
    The title compound, C(14)H(11)BrN(4)O(4), comprises two crystallographically independent mol-ecules (A and B) in the asymmetric unit. In mol-ecule B, intra-molecular bifurcated N-H⋯O and N-H⋯Br hydrogen bonds and in mol-ecule A, an intra-molecular N-H⋯O hydrogen bond generate S(6) ring motifs. The dihedral angle between the phenyl and benzene rings is 5.44 (6) in mol-ecule A and 7.63 (6)° in mol-ecule B. The ortho- and meta-nitro substituents make dihedral angles of 6.67 (15) and 2.26 (15)° to the attached benzene ring in mol-ecule A and 6.37 (17) and 5.81 (16)° in mol-ecule B. The Br atom in mol-ecule B is disordered over two positions with a refined site-occupancy ratio of 0.61 (3):0.39 (3). Inter-esting features of the crystal structure are the short Br⋯N [3.257 (3)-3.294 (4) Å], Br⋯O [3.279 (3)-3.307 (4) Å] and O⋯O [2.9319 (16)-2.9995 (16) Å] contacts, which are shorter than the sum of the van der Waals radii of these atoms. The crystal structure is further stabilized by inter-molecular C-H⋯O and π-π inter-actions [centroid-centroid distances = 3.6643 (8)-3.8514 (8) Å].
  2. Salhin A, Razak NA, Rahman IA
    PMID: 21581327 DOI: 10.1107/S1600536808037148
    The title thio-semicarbazone derivative, C(12)H(18)N(4)S, features intra-molecular N-H⋯N and C-H⋯S hydrogen bonds which generate S(5) ring motifs. The dihedral angle between the benzene ring and the thio-urea unit is 6.30 (6)° indicating planarity in the mol-ecule. Inter-molecular N-H⋯S hydrogen bonds generate dimers with an R(2) (2)(8) ring motif. The methyl group of the N-ethyl residue is disordered and was refined with site occupancies of 0.521 (5) and 0.479 (5).
  3. Tahir TF, Salhin A, Ab Ghani S
    Sensors (Basel), 2012 Nov 06;12(11):14968-82.
    PMID: 23202196 DOI: 10.3390/s121114968
    A flow injection analysis (FIA) incorporating a thiosemicarbazone-based coated wire electrode (CWE) was developed method for the determination of mercury(II). A 0.1 M KNO(3) carrier stream with pH between 1 and 5 and flow rate of 1 mL·min(-1) were used as optimum parameters. A linear plot within the concentration range of 5 × 10(-6)–0.1 M Hg(II), slope of 27.8 ± 1 mV per decade and correlation coefficient (R2) of 0.984 were obtained. The system was successfully applied for the determination of mercury(II) in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3)) were obtained, giving a typical throughput of 30 samples·h(-1).
  4. Tameem AA, Saad B, Makahleh A, Salhin A, Saleh MI
    Talanta, 2010 Sep 15;82(4):1385-91.
    PMID: 20801345 DOI: 10.1016/j.talanta.2010.07.004
    A sorbent material based on a newly synthesized hydrazone ligand, 4-hydroxy-N'-[(E)-(2-hydroxyphenyl)methylidene]benzohydrazide was prepared by immobilizing the ligand into a silica sol-gel matrix. The capability of the sorbent material for the extraction of seven biogenic amines (BAs), i.e., tryptamine (TRY), beta-phenylethylamine (PEA), putrescine (PUT), cadaverine (CAD), histamine (HIS), tyramine (TYR), and spermidine (SPD) was studied. Under the adopted conditions, the sorbent showed good selectivity towards PUT, CAD, HIS and SPD (% extraction (%E)>96) while %E for TYR, TRY and PEA were 82.0, 78.9 and 46.4%, respectively. The sorbent could be used up to six extraction cycles for SPD, CAD and PUT and was applied to the determination of food samples ("budu", ketchup, orange juice, soy sauce) that were spiked with 20 mg L(-1) of the BAs. The extracted analytes were derivatized with dansyl chloride before the HPLC determination. With the exception of HIS and TYR in "budu" sample, reasonable recoveries were found for the other analytes in all the tested food samples.
  5. Abd Razik BM, Osman H, Basiri A, Salhin A, Kia Y, Ezzat MO, et al.
    Bioorg Chem, 2014 Dec;57:162-168.
    PMID: 25462993 DOI: 10.1016/j.bioorg.2014.10.005
    Novel aromatic embedded Schiff bases have been synthesized in ionic liquid [bmim]Br and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activities. Among the newly synthesized compounds, 5f, 5h and 7j displayed higher AChE enzyme inhibitory activities than standard drug, galanthamine, with IC50 values of 1.88, 2.05 and 2.03μM, respectively. Interestingly, all the compounds except for compound 5c displayed higher BChE inhibitories than standard with IC50 values ranging from 3.49 to 19.86μM. Molecular docking analysis for 5f and 7j possessing the most potent AChE and BChE inhibitory activities, disclosed their binding interaction templates to the active site of AChE and BChE enzymes, respectively.
  6. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM
    PMID: 24607427 DOI: 10.1016/j.saa.2014.01.086
    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.
  7. Ali AQ, Eltayeb NE, Teoh SG, Salhin A, Fun HK
    Acta Crystallogr Sect E Struct Rep Online, 2012 Oct 1;68(Pt 10):o2868-9.
    PMID: 23125668 DOI: 10.1107/S1600536812036471
    In the title compound, C(11)H(11)FN(4)OS, an intra-molecular N-H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol-ecules form chains through N-H⋯O hydrogen bonds, which are extended by N-H⋯S hydrogen bonds into an infinite three-dimensional network.
  8. Zulkepli NA, Rou KV, Sulaiman WN, Salhin A, Saad B, Seeni A
    Asian Pac J Cancer Prev, 2011;12(1):259-63.
    PMID: 21517268
    One of the main aims of cancer chemopreventive studies is to identify ideal apoptotic inducers, especially examples which can induce early apoptotic activity. The present investigation focused on chemopreventive effects of a hydrazone derivative using an in vitro model with tongue cancer cells. Alteration in cell morphology was ascertained, along with stage in the cell cycle and proliferation, while living-dead status of the cells was confirmed under a confocal microscope. In addition, cytotoxicity test was performed using normal mouse skin fibroblast cells. The results showed that the compound inhibited the growth of tongue cancer cells with an inhibitory concentration (IC₅₀) of 0.01 mg/ml in a dose and time-dependent manner, with a two-fold increase in early apoptotic activity and G0G1 phase cell cycle arrest compared to untreated cells. Exposure to the compound also resulted in alterations of cell morphology including vacuolization and cellular shrinkage. Confocal microscope analysis using calcein and ethidium staining confirmed that the compound caused cell death, whereas no cytotoxic effects on normal mouse skin fibroblast cells were observed. In conclusion, the findings in this study suggested that the hydrazone derivative acts as an apoptotic inducer with anti-proliferative chemopreventive activity in tongue cancer cells.
  9. Razik BM, Osman H, Ezzat MO, Basiri A, Salhin A, Kia Y, et al.
    Med Chem, 2016;12(6):527-36.
    PMID: 26833077
    BACKGROUND: The search for new cholinesterase inhibitors is still a promising approach for management of Alzheimer`s disease. Schiff bases are considered as important class of organic compounds, which have wide range of applications including as enzyme inhibitors. In the present study, a new green ionic liquid mediated strategy was developed for convenient synthesis of two series of Schiff bases 3(a-j) and 5(a-j) as potential cholinesterase inhibitors using aromatic aldehydes and primary amines in [bmim]Br.

    METHODS: The synthesized compounds were evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential by modified Ellman's method. The molecular interactions between the most active compound and the enzyme were analyzed by molecular docking.

    RESULTS: Among them, 3j displayed higher inhibitory activities than reference drug, galanthamine, with IC50 values of 2.05 and 5.77 µM, for AChE and BChE, respectively. Interestingly, all the compounds except 3b displayed higher BChE inhibitions than galanthamine with IC50 values ranging from 5.77 to 18.52 µM. Molecular docking of compound 3j inside the TcAChE and hBChE completely coincided with the inhibitory activities observed. The compound forms strong hydrogen bonding at the peripheral anionic site of AChE whereas on BChE, it had hydrophobic and mild polar interactions.

    CONCLUSION: An efficient and eco-friendly synthetic methodology has been developed to synthesize Schiff bases in a very short reaction time and excellent yields in ionic solvent, whereby the compounds from series 3 showed promising cholinesterase inhibitory activity.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links