OBJECTIVES: In this manuscript, the Robotic Facial Recognition System using the Compound Classifier (RERS-CC) is introduced to improve the recognition rate of human faces. The process is differentiated into classification, detection, and recognition phases that employ principal component analysis based learning. In this learning process, the errors in image processing based on the extracted different features are used for error classification and accuracy improvements.
RESULTS: The performance of the proposed RERS-CC is validated experimentally using the input image dataset in MATLAB tool. The performance results show that the proposed method improves detection and recognition accuracy with fewer errors and processing time.
CONCLUSION: The input image is processed with the knowledge of the features and errors that are observed with different orientations and time instances. With the help of matching dataset and the similarity index verification, the proposed method identifies precise human face with augmented true positives and recognition rate.
OBJECTIVES: This paper discusses activity detection and analysis (ADA) using security robots in workplaces. The application scenario of this method relies on processing image and sensor data for event and activity detection. The events that are detected are classified for its abnormality based on the analysis performed using the sensor and image data operated using a convolution neural network. This method aims to improve the accuracy of detection by mitigating the deviations that are classified in different levels of the convolution process.
RESULTS: The differences are identified based on independent data correlation and information processing. The performance of the proposed method is verified for the three human activities, such as standing, walking, and running, as detected using the images and sensor dataset.
CONCLUSION: The results are compared with the existing method for metrics accuracy, classification time, and recall.
OBJECTIVE: In this article, we study the robotic kitting system with a Robotic Mounted Rail Arm System (RMRAS), which travels narrowly to choose the elements.
RESULTS: The objective is to evaluate the efficiency of a robotic kitting system in cycle times through modeling of the elementary kitting operations that the robot performs (pick and room, move, change tools, etc.). The experimental results show that the proposed method enhances the performance and efficiency ratio when compared to other existing methods.
CONCLUSION: This study with the manufacturer can help him assess the robotic area performance in a given design (layout and picking a policy, etc.) as part of an ongoing project on automation of kitting operations.
OBJECTIVES: In this manuscript, the Interaction Modeling and Classification Scheme (IMCS) is introduced to improve the accuracy of HRI. This scheme consists of two phases, namely error classification and input mapping. In the error classification process, the input is analyzed for its events and conditional discrepancies to assign appropriate responses in the input mapping phase. The joint process is aided by a linear learning model to analyze the different conditions in the event and input detection.
RESULTS: The performance of the proposed scheme shows that it is capable of improving the interaction accuracy by reducing the ratio of errors and interaction response by leveraging the information extraction from the discrete and successive human inputs.
CONCLUSION: The fetched data are analyzed by classifying the errors at the initial stage to achieve reliable responses.
OBJECTIVE: In this paper, Non-linear Adaptive Heuristic Mathematical Model (NAHMM) has been proposed for the prevention of workplace violence using security Human-Robot Collaboration (HRC). Human-Robot Collaboration (HRC) is an area of research with a wide range of up-demands, future scenarios, and potential economic influence. HRC is an interdisciplinary field of research that encompasses cognitive sciences, classical robotics, and psychology.
RESULTS: The robot can thus make the optimal decision between actions that expose its capabilities to the human being and take the best steps given the knowledge that is currently available to the human being. Further, the ideal policy can be measured carefully under certain observability assumptions.
CONCLUSION: The system is shown on a collaborative robot and is compared to a state of the art security system. The device is experimentally demonstrated. The new system is being evaluated qualitatively and quantitatively.