Displaying all 8 publications

Abstract:
Sort:
  1. Claoston N, Samsuri AW, Ahmad Husni MH, Mohd Amran MS
    Waste Manag Res, 2014 Apr;32(4):331-9.
    PMID: 24643171 DOI: 10.1177/0734242X14525822
    Biochar has received great attention recently due to its potential to improve soil fertility and immobilize contaminants as well as serving as a way of carbon sequestration and therefore a possible carbon sink. In this work, a series of biochars were produced from empty fruit bunch (EFB) and rice husk (RH) by slow pyrolysis at different temperatures (350, 500, and 650°C) and their physicochemical properties were analysed. The results indicate that porosity, ash content, electrical conductivity (EC), and pH value of both EFB and RH biochars were increased with temperature; however, yield, cation exchange capacity (CEC), and H, C, and N content were decreased with increasing pyrolysis temperature. The Fourier transform IR spectra were similar for both RH and EFB biochars but the functional groups were more distinct in the EFB biochar spectra. There were reductions in the amount of functional groups as pyrolysis temperature increased especially for the EFB biochar. However, total acidity of the functional groups increased with pyrolysis temperature for both biochars.
  2. Leng LY, Husni MH, Samsuri AW
    Bioresour Technol, 2011 Nov;102(22):10759-62.
    PMID: 21958525 DOI: 10.1016/j.biortech.2011.08.131
    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field.
  3. Fahmi AH, Samsuri AW, Jol H, Singh D
    R Soc Open Sci, 2018 Nov;5(11):181328.
    PMID: 30564418 DOI: 10.1098/rsos.181328
    Biochars have been successfully used to reduce bioavailability and leaching of heavy metals in contaminated soils. The efficiency of biochar to immobilize heavy metals can be increased by reducing the particle size, which can increase the surface area and the cation exchange capacity (CEC). In this study, the empty fruit bunch biochar (EFBB) of oil palm was separated into two particle sizes, namely, fine (F-EFBB < 50 µm) and coarse (C-EFBB > 2 mm), to treat the contaminated soil with Cd and Pb. Results revealed that the addition of C-EFBB and F-EFBB increased the pH, electrical conductivity and CEC of the contaminated soil. The amounts of synthetic rainwater extractable and leachable Cd and Pb significantly decreased with the EFBB application. The lowest extractable and leachable Cd and Pb were observed from 1% F-EFBB-treated soil. The amount of extractable and leachable Cd and Pb decreased with increasing incubation times and leaching cycles. The application of F-EFBB to Cd and Pb-contaminated soil can immobilize the heavy metals more than that of C-EFBB. Therefore, the EFBB can be recommended for the remediation of heavy metal-contaminated soils, and a finer particle size can be applied at a lower application rate than the coarser biochar to achieve these goals.
  4. Garba J, Samsuri AW, Othman R, Ahmad Hamdani MS
    Environ Monit Assess, 2018 Oct 27;190(11):676.
    PMID: 30368595 DOI: 10.1007/s10661-018-7034-3
    This study investigates adsorption-desorption and the leaching potential of glyphosate and aminomethylphosphonic acid (AMPA) in control and amended-addition of cow dung or rice husk ash-acidic Malaysian soil with high oxide mineral content. The addition of cow dung or rice husk ash increased the adsorptive removal of AMPA. The isotherm data of glyphosate and AMPA best fitted the Freundlich model. The constant Kf for glyphosate was high in the control soil (544.873 mg g-1) followed by soil with cow dung (482.451 mg g-1) then soil with rice husk ash (418.539 mg g-1). However, for AMPA, soil with cow dung was high (166.636 mg g-1) followed by soil with rice husk ash (137.570 mg g-1) then the control soil (48.446 mg g-1). The 1/n values for both glyphosate and AMPA adsorptions were
  5. Samsuri AW, Fahmi AH, Jol H, Daljit S
    Int J Phytoremediation, 2020;22(6):567-577.
    PMID: 31744301 DOI: 10.1080/15226514.2019.1687423
    Various amendments are used to reduce the phytoavailability of heavy metals in contaminated soils, but recently the use of biochar is receiving serious attention. In this study, two particle sizes of an oil palm empty fruit bunch biochar (EFBB); <50 µm (F-EFBB) and >2 mm (C-EFBB) were applied at either 0, 0.5, or 1% (w/w) to soils contaminated with either Cd or Pb and the phytoavailability of these metals by mustard plants grown on the soils was evaluated. Results revealed that the application of EFBB at 1% significantly increased plant growth parameters as compared with the control in Cd-soil. However, there was no significant effect of EFBB application rate on plant growth parameters in Pb-soil. There was a significant difference in the concentrations of Cd and Pb in the plant root and shoot between soils receiving different particle sizes of EFBB. The treatment of 1% F-EFBB gave the lowest concentration of the Cd concentration in the shoot (115.200 mgkg-1) and Pb concentration in the root and shoot (4196.000 and 78.467 mgkg-1, respectively) as compared with the other treatments. Therefore, F-EFBB application at high rates can be recommended for reducing the phytoavailability of Cd and Pb in contaminated soils.
  6. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
  7. Zamani SA, Yunus R, Samsuri AW, Salleh MAM, Asady B
    Bioinorg Chem Appl, 2017;2017:7914714.
    PMID: 28420949 DOI: 10.1155/2017/7914714
    This study aims to produce optimized biochar from oil palm empty fruit bunches (OPEFB), as a green, low cost adsorbent for uptake of zinc from aqueous solution. The impact of pyrolysis conditions, namely, highest treatment temperature (HTT), heating rate (HR), and residence time (RT) on biochar yield and adsorption capacity towards zinc, was investigated. Mathematical modeling and optimization of independent variables were performed employing response surface methodology (RSM). HTT was found to be the most influential variable, followed by residence time and heating rate. Based on the central composite design (CCD), two quadratic models were developed to correlate three independent variables to responses. The optimum production condition for OPEFB biochar was found as follows: HTT of 615°C, HR of 8°C/min, and RT of 128 minutes. The optimum biochar showed 15.18 mg/g adsorption capacity for zinc and 25.49% of yield which was in agreement with the predicted values, satisfactory. Results of the characterization of optimum product illustrated well-developed BET surface area and porous structure in optimum product which favored its sorptive ability.
  8. Zin KM, Effendi Halmi MI, Abd Gani SS, Zaidan UH, Samsuri AW, Abd Shukor MY
    Biomed Res Int, 2020;2020:2734135.
    PMID: 32149095 DOI: 10.1155/2020/2734135
    The release of wastewater from textile dyeing industrial sectors is a huge concern with regard to pollution as the treatment of these waters is truly a challenging process. Hence, this study investigates the triazo bond Direct Blue 71 (DB71) dye decolorization and degradation dye by a mixed bacterial culture in the deficiency source of carbon and nitrogen. The metagenomics analysis found that the microbial community consists of a major bacterial group of Acinetobacter (30%), Comamonas (11%), Aeromonadaceae (10%), Pseudomonas (10%), Flavobacterium (8%), Porphyromonadaceae (6%), and Enterobacteriaceae (4%). The richest phylum includes Proteobacteria (78.61%), followed by Bacteroidetes (14.48%) and Firmicutes (3.08%). The decolorization process optimization was effectively done by using response surface methodology (RSM) and artificial neural network (ANN). The experimental variables of dye concentration, yeast extract, and pH show a significant effect on DB71 dye decolorization percentage. Over a comparative scale, the ANN model has higher prediction and accuracy in the fitness compared to the RSM model proven by approximated R2 and AAD values. The results acquired signify an efficient decolorization of DB71 dye by a mixed bacterial culture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links