Displaying all 11 publications

Abstract:
Sort:
  1. Sankaran R, Bong JH, Chow YH, Wong FWF, Ling TC, Show PL
    Curr Protein Pept Sci, 2019 Jun 28.
    PMID: 31264547 DOI: 10.2174/1389203720666190628142203
    Reversed micellear system (RMS) is an innovative technique used for the isolation, extraction and purification of proteins and enzymes. Studies have demonstrated that RMS is an efficient purification technology for extracting proteins and enzymes from natural plant materials or fermentation broth. Lately, reverse micelles have created wider biological applications and with the ease of scaling up and the possibility for continuous process has made RMS a vital purification technique in various field. In this study, an extensive review of RMS with the current application in biotechnology will be examined. This review provides insights with the fundamental principles, key variables and parameters of RMS. In addition, a comparative study of RMS with other liquid-liquid extraction techniques are included. The present review aims to provide a general overview of RMS by summarising the research works, since the introduction of the technology to current development.
  2. Cheng TH, Sankaran R, Show PL, Ooi CW, Liu BL, Chai WS, et al.
    Int J Biol Macromol, 2021 Aug 31;185:761-772.
    PMID: 34216668 DOI: 10.1016/j.ijbiomac.2021.06.177
    Cylinder-shaped NaY zeolite was used as an adsorbent for eradicating both heavy metal ions (Cu2+, Zn2+, Ni2+, and Co2+) and proteins from the waste streams. As a pseudo-metal ion affinity adsorbent, NaY zeolite was used in the capture of heavy metal ions in the first stage. The amount (molar basis) of metal ions adsorbed onto NaY zeolite decreased in the order of Cu2+ > Zn2+ > Co2+ > Ni2+. Bovine serum albumin (BSA) was utilized as a model of proteins used in the waste adsorption process by NaY zeolite. The adsorption capacities of NaY zeolite and Cu/NaY zeolite for BSA were 14.90 mg BSA/g zeolite and 84.61 mg BSA/g zeolite, respectively. Moreover, Cu/NaY zeolite was highly stable in the solutions made of 2 M NaCl, 500 mM imidazole or 125 mM EDTA solutions. These conditions indicated that the minimal probability of secondary contamination caused by metal ions and soluble proteins in the waste stream. This study demonstrates the potential of Cu/NaY zeolite complex as an efficient pseudo-metal chelate adsorbent that could remove metal ions and water-soluble proteins from wastewater concurrently.
  3. Yap JK, Sankaran R, Chew KW, Halimatul Munawaroh HS, Ho SH, Rajesh Banu J, et al.
    Chemosphere, 2021 Oct;281:130886.
    PMID: 34020196 DOI: 10.1016/j.chemosphere.2021.130886
    Microalgae have drawn significant interest worldwide, owing to their enormous application potential in the green energy, biopharmaceutical, and nutraceutical industries. Many studies have proved and stated the potential of microalgae in the area of biofuel which is economically effective and environmentally friendly. Besides the commercial value, the potential of microalgae in environmental protection has also been investigated. Microalgae-based process is one of the most effective way to treat heavy metal pollution, compared to conventional methods, it does not release any toxic waste or harmful gases, and the aquatic organism will not receive any harmful effects. The potential dual role of microalge in phytoremedation and energy production has made it widely explored for its capability. The interest of microalgae in various application has motivated a new focus in green technologies. Considering the rapid population growth with the continuous increase on the global demand and the application of biomass in diverse field, significant upgrades have been performed to accommodate green technological advancement. In the past decade, noteworthy advancement has been made on the technology involving the diverse application of microalgae biomass. This review aims to explore on the application of microalgae and the development of green technology in various application for microalgae biomass. There is great prospects for researchers in this field to delve into other potential utilization of microalgae biomass not only for bioremediation process but also to generate revenues from microalgae by incorporating clean and green technology for long-term sustainability and environmental benefits.
  4. Sankaran R, Show PL, Cheng YS, Tao Y, Ao X, Nguyen TDP, et al.
    Mol Biotechnol, 2018 Oct;60(10):749-761.
    PMID: 30116991 DOI: 10.1007/s12033-018-0111-6
    Microalgae are the most promising sources of protein, which have high potential due to their high-value protein content. Conventional methods of protein harnessing required multiple steps, and they are generally complex, time consuming, and expensive. Currently, the study of integration methods for microalgae cell disruption and protein recovery process as a single-step process is attracting considerable interest. This study aims to investigate the novel approach of integration method of electrolysis and liquid biphasic flotation for protein extraction from wet biomass of Chlorella sorokiniana CY-1 and obtaining the optimal operating conditions for the protein extraction. The optimized conditions were found at 60% (v/v) of 1-propanol as top phase, 250 g/L of dipotassium hydrogen phosphate as bottom phase, crude microalgae loading of 0.1 g, air flowrate of 150 cc/min, flotation time of 10 min, voltage of 20 V and electrode's tip touching the top phase of LBEF. The protein recovery and separation efficiency after optimization were 23.4106 ± 1.2514% and 173.0870 ± 4.4752%, respectively. Comparison for LBEF with and without the aid of electric supply was also conducted, and it was found that with the aid of electrolysis, the protein recovery and separation efficiency increased compared to the LBEF without electrolysis. This novel approach minimizes the steps for overall protein recovery from microalgae, time consumption, and cost of operation, which is beneficial in bioprocessing industry.
  5. Sankaran R, Manickam S, Yap YJ, Ling TC, Chang JS, Show PL
    Ultrason Sonochem, 2018 Nov;48:231-239.
    PMID: 30080546 DOI: 10.1016/j.ultsonch.2018.06.002
    In this study, a simple sugaring-out supported by liquid biphasic flotation technique combined with ultrasonication was introduced for the extraction of proteins from microalgae. Sugaring-out as a phase separation method is novel and has been used in the extraction of metal ions, biomolecules and drugs. But, its functioning in protein separation from microalgae is still unknown. In this work, the feasibility of sugaring-out coupled with ultrasound for the extraction of protein was investigated. Primary studies were carried out to examine the effect of sonication on the microalgae cell as well as the separation efficiency of the integrated method. Effect of various operating parameters such as the concentration of microalgae biomass, the location of sonication probe, sonication time, ultrasonic pulse mode (includes varying ON and OFF duration of sonication), concentration of glucose, types of sugar, concentration of acetonitrile and the flow rate in the flotation system for achieving a higher separation efficiency and yield of protein were assessed. Besides, a large-scale study of the integration method was conducted to verify the consistency of the followed technique. A maximum efficiency (86.38%) and yield (93.33%) were attained at the following optimized conditions: 0.6% biomass concentration, 200 g/L of glucose concentration, 100% acetonitrile concentration with 5 min of 5 s ON/10 s OFF pulse mode and at a flow rate of 100 cc/min. The results obtained for large scale were 85.25% and 92.24% for efficiency and yield respectively. The proposed liquid biphasic flotation assisted with ultrasound for protein separation employing sugaring-out demonstrates a high production and separation efficiency and is a cost-effective solution. More importantly, this method provides the possibility of extending its application for the extraction of other important biomolecules.
  6. Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, et al.
    Bioresour Technol, 2020 Feb;298:122476.
    PMID: 31810736 DOI: 10.1016/j.biortech.2019.122476
    Microalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for biofuel production are advancing, the productivity and yield from these techniques are low. Over the past years, various pretreatment techniques have been developed and successfully employed to improve the technology. This paper presents an in-depth review of the recent advancement of pretreatment methods focusing on microalgal and lignocellulosic biomass. The technological approaches involving physical, chemical, biological and other latest pretreatment methods are reviewed.
  7. Sankaran R, Show PL, Lee SY, Yap YJ, Ling TC
    Bioresour Technol, 2018 Feb;250:306-316.
    PMID: 29174909 DOI: 10.1016/j.biortech.2017.11.050
    Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production.
  8. Azmi AAB, Chew KW, Chia WY, Mubashir M, Sankaran R, Lam MK, et al.
    Bioresour Technol, 2021 Aug;333:125197.
    PMID: 33930672 DOI: 10.1016/j.biortech.2021.125197
    The work aimed to study the potential in producing a system with high microalgal protein recovery and separation by utilizing a one-step or integrated downstream process. This in turn enables green biorefinery of protein, contributing to circular bioeconomy whereby less energy, labor, and cost are required for the process. By utilizing electric three phase partitioning flotation system, high protein recovery yield, R of 99.42 ± 0.52% and high separation efficiency, E of 52.72 ± 0.40% system was developed. Scaling up also showed high protein recovery yield with R value of 89.13 ± 1.56%. Total processing duration (extraction, separation, and purification) was also significantly reduced to 10 min. This system showed remarkable potential in reducing processing time, alternatively cost of production, benefiting microalgal downstream processing. Concisely, through this system, microalgal bioprocessing will no longer be complex allowing a wide array of potentials for further studies in this field.
  9. Azmi AAB, Sankaran R, Show PL, Ling TC, Tao Y, Munawaroh HSH, et al.
    Bioresour Technol, 2020 Apr;302:122874.
    PMID: 32007308 DOI: 10.1016/j.biortech.2020.122874
    Pretreatment of microalgal biomass possessing rigid cell wall is a critical step for enhancing the efficiency of microalgal biorefinery. However, the conventional pretreatment processes suffer the drawbacks of complex processing steps, long processing time, low conversion efficiency and high processing costs. This significantly hinders the industrial applicability of microalgal biorefinery. The innovative electricity-aid pretreatment techniques serve as a promising processing tool to extensively enhance the release of intracellular substances from microalgae. In this review, application of electric field-based techniques and recent advances of using electrical pretreatments on microalgae cell focusing on pulsed electric field, electrolysis, high voltage electrical discharges and moderate electric field are reviewed. In addition, the emerging techniques integrating electrolysis with liquid biphasic flotation process as promising downstream approach is discussed. This review delivers broad knowledge of the present significance of the application of these methods focusing on the development of electric assisted biomolecules extraction from microalgae.
  10. Markandan K, Tiong YW, Sankaran R, Subramanian S, Markandan UD, Chaudhary V, et al.
    PMID: 36243900 DOI: 10.1080/02648725.2022.2127070
    Infectious outbreaks are the foremost global public health concern, challenging the current healthcare system, which claims millions of lives annually. The most crucial way to control an infectious outbreak is by early detection through point-of-care (POC) diagnostics. POC diagnostics are highly advantageous owing to the prompt diagnosis, which is economical, simple and highly efficient with remote access capabilities. In particular, utilization of nanomaterials to architect POC devices has enabled highly integrated and portable (compact) devices with enhanced efficiency. As such, this review will detail the factors influencing the emergence of infectious diseases and methods for fast and accurate detection, thus elucidating the underlying factors of these infections. Furthermore, it comprehensively highlights the importance of different nanomaterials in POCs to detect nucleic acid, whole pathogens, proteins and antibody detection systems. Finally, we summarize findings reported on nanomaterials based on advanced POCs such as lab-on-chip, lab-on-disc-devices, point-of-action and hospital-on-chip. To this end, we discuss the challenges, potential solutions, prospects of integrating internet-of-things, artificial intelligence, 5G communications and data clouding to achieve intelligent POCs.
  11. Nhi-Cong LT, Lien DT, Gupta BS, Mai CTN, Ha HP, Nguyet NTM, et al.
    Appl Biochem Biotechnol, 2020 May;191(1):313-330.
    PMID: 31853877 DOI: 10.1007/s12010-019-03203-x
    Oil pollution in marine environment caused by oil spillage has been a main threat to the ecosystem including the ocean life and to the human being. In this research, three indigenous purple photosynthetic strains Rhodopseudomonas sp. DD4, DQ41, and FO2 were isolated from oil-contaminated coastal zones in Vietnam. The cells of these strains were immobilized on different carriers including cinder beads (CB), coconut fiber (CF), and polyurethane foam (PUF) for diesel oil removal from artificial seawater. The mixed biofilm formed by using CB, CF, and PUF as immobilization supports degraded 90, 91, and 95% of diesel oil (DO) with the initial concentration of 17.2 g/L, respectively, after 14 days of incubation. The adsorption of DO on different systems was accountable for the removal of 12-16% hydrocarbons for different carriers. To the best of our knowledge, this is the first report on diesel oil degradation by purple photosynthetic bacterial biofilms on different carriers. Moreover, using carriers attaching purple photosynthetic bacteria to remove diesel oil in large scale is considered as an essential method for the improvement of a cost-effective and efficient bioremediation manner. This study can be a promising approach to eliminate DO from oil-contaminated seawater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links