Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Salman OH, Rasid MF, Saripan MI, Subramaniam SK
    J Med Syst, 2014 Sep;38(9):103.
    PMID: 25047520 DOI: 10.1007/s10916-014-0103-4
    The healthcare industry is streamlining processes to offer more timely and effective services to all patients. Computerized software algorithm and smart devices can streamline the relation between users and doctors by providing more services inside the healthcare telemonitoring systems. This paper proposes a multi-sources framework to support advanced healthcare applications. The proposed framework named Multi Sources Healthcare Architecture (MSHA) considers multi-sources: sensors (ECG, SpO2 and Blood Pressure) and text-based inputs from wireless and pervasive devices of Wireless Body Area Network. The proposed framework is used to improve the healthcare scalability efficiency by enhancing the remote triaging and remote prioritization processes for the patients. The proposed framework is also used to provide intelligent services over telemonitoring healthcare services systems by using data fusion method and prioritization technique. As telemonitoring system consists of three tiers (Sensors/ sources, Base station and Server), the simulation of the MSHA algorithm in the base station is demonstrated in this paper. The achievement of a high level of accuracy in the prioritization and triaging patients remotely, is set to be our main goal. Meanwhile, the role of multi sources data fusion in the telemonitoring healthcare services systems has been demonstrated. In addition to that, we discuss how the proposed framework can be applied in a healthcare telemonitoring scenario. Simulation results, for different symptoms relate to different emergency levels of heart chronic diseases, demonstrate the superiority of our algorithm compared with conventional algorithms in terms of classify and prioritize the patients remotely.
  2. Hashim S, Bradley DA, Saripan MI, Ramli AT, Wagiran H
    Appl Radiat Isot, 2010 Apr-May;68(4-5):700-3.
    PMID: 19892557 DOI: 10.1016/j.apradiso.2009.10.027
    This paper describes a preliminary study of the thermoluminescence (TL) response of doped SiO(2) optical fibres subjected to (241)AmBe neutron irradiation. The TL materials, which comprise Al- and Ge-doped silica fibres, were exposed in close contact with the (241)AmBe source to obtain fast neutron interactions through use of measurements obtained with and without a Cd filter (the filter being made to entirely enclose the fibres). The neutron irradiations were performed for exposure times of 1-, 2-, 3-, 5- and 7-days in a neutron tank filled with water. In this study, use was also made of the Monte Carlo N-particle (MCNP) code version 5 (V5) to simulate the neutron irradiations experiment. It was found that the commercially available Ge-doped and Al-doped optical fibres show a linear dose response subjected to fast neutrons from (241)AmBe source up to seven days of irradiations. The simulation performed using MCNP5 also exhibits a similar pattern, albeit differing in sensitivity. The TL response of Ge-doped fibre is markedly greater than that of the Al-doped fibre, the total absorption cross section for Ge in both the fast and thermal neutrons region being some ten times greater than that of Al.
  3. Yip M, Saripan MI, Wells K, Bradley DA
    PLoS One, 2015;10(9):e0135769.
    PMID: 26348619 DOI: 10.1371/journal.pone.0135769
    Detection of buried improvised explosive devices (IEDs) is a delicate task, leading to a need to develop sensitive stand-off detection technology. The shape, composition and size of the IEDs can be expected to be revised over time in an effort to overcome increasingly sophisticated detection methods. As an example, for the most part, landmines are found through metal detection which has led to increasing use of non-ferrous materials such as wood or plastic containers for chemical based explosives being developed.
  4. Zakaria NS, Saripan MI, Subarimaniam N, Ismail A
    JMIR Serious Games, 2020 Aug 10;8(3):e18247.
    PMID: 32663153 DOI: 10.2196/18247
    BACKGROUND: Gamification has remarkable potential in the learning space. The process of creating a gamified system and its influence on human behavior reflect the interaction between educators and machines.

    OBJECTIVE: The purpose of this pilot study was to present Ethoshunt as a gamification-based mobile app that can be used in teaching and learning ethics.

    METHODS: This study involved a mixed-methods research design. The researchers surveyed 39 undergraduate students who were introduced to Ethoshunt in order to examine the relationships between mobile app usability and positive emotions, ethical competency, and user experience. Affinity diagramming was used as a tool to organize the opinions and experiences of participants using featured gamification elements.

    RESULTS: Game dynamics and game mechanics explained the functionality of Ethoshunt. In addition, the learning flow through Ethoshunt was discussed. Overall, the findings were positive, and mobile app usability had the strongest relationship with positive emotions (r=0.744, P

  5. Moghbel M, Mashohor S, Mahmud R, Saripan MI
    EXCLI J, 2016;15:406-23.
    PMID: 27540353 DOI: 10.17179/excli2016-402
    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset.
  6. Moghbel M, Mashohor S, Mahmud R, Saripan MI
    EXCLI J, 2016;15:500-517.
    PMID: 28096782 DOI: 10.17179/excli2016-473
    Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91.
  7. Yee J, Yap NT, Mahmud R, Saripan MI
    Front Psychol, 2023;14:1038630.
    PMID: 36949909 DOI: 10.3389/fpsyg.2023.1038630
    This study investigated the influence of multiliteracy in opaque orthographies on phonological awareness. Using a visual rhyme judgement task in English, we assessed phonological processing in three multilingual and multiliterate populations who were distinguished by the transparency of the orthographies they can read in (N = 135; ages 18-40). The first group consisted of 45 multilinguals literate in English and a transparent Latin orthography like Malay; the second group consisted of 45 multilinguals literate in English and transparent orthographies like Malay and Arabic; and the third group consisted of 45 multilinguals literate in English, transparent orthographies, and Mandarin Chinese, an opaque orthography. Results showed that all groups had poorer performance in the two opaque conditions: rhyming pairs with different orthographic endings and non-rhyming pairs with similar orthographic endings, with the latter posing the greatest difficulty. Subjects whose languages consisted of half or more opaque orthographies performed significantly better than subjects who knew more transparent orthographies than opaque orthographies. The findings are consistent with past studies that used the visual rhyme judgement paradigm and suggest that literacy experience acquired over time relating to orthographic transparency may influence performance on phonological awareness tasks.
  8. Alajerami YS, Hashim S, Ramli AT, Saleh MA, Saripan MI, Alzimami K, et al.
    Appl Radiat Isot, 2013 Aug;78:21-5.
    PMID: 23644162 DOI: 10.1016/j.apradiso.2013.03.095
    New glasses Li2CO3-K2CO3-H3BO3 (LKB) co-doped with CuO and MgO, or with TiO2 and MgO, were synthesized by the chemical quenching technique. The thermoluminescence (TL) responses of LKB:Cu,Mg and LKB:Ti,Mg irradiated with 6 MV photons or 6 MeV electrons were compared in the dose range 0.5-4.0 Gy. The standard commercial dosimeter LiF:Mg,Ti (TLD-100) was used to calibrate the TL reader and as a reference in comparison of the TL properties of the new materials. The dependence of the responses of the new materials on (60)Co dose is linear in the range of 1-1000 Gy. The TL yields of both of the co-doped glasses and TLD-100 are greater for electron irradiation than for photon irradiation. The TL sensitivity of LKB:Ti,Mg is 1.3 times higher than the sensitivity of LKB:Cu,Mg and 12 times less than the sensitivity of TLD-100. The new TL dosimetric materials have low effective atomic numbers, good linearity of the dose responses, excellent signal reproducibility, and a simple glow curve structure. This combination of properties makes them suitable for radiation dosimetry.
  9. Al-Asadi HA, Al-Mansoori MH, Hitam S, Saripan MI, Mahdi MA
    Opt Express, 2011 Jan 31;19(3):1842-53.
    PMID: 21368999 DOI: 10.1364/OE.19.001842
    We implement a particle swarm optimization (PSO) algorithm to characterize stimulated Brillouin scattering phenomena in optical fibers. The explicit and strong dependence of the threshold exponential gain on the numerical aperture, the pump laser wavelength and the optical loss coefficient are presented. The proposed PSO model is also evaluated with the localized, nonfluctuating source model and the distributed (non-localized) fluctuating source model. Using our model, for fiber lengths from 1 km to 29 km, the calculated threshold exponential gain of stimulated Brillouin scattering is gradually decreased from 17.4 to 14.6 respectively. The theoretical results of Brillouin threshold power predicted by the proposed PSO model show a good agreement with the experimental results for different fiber lengths from 1 km to 12 km.
  10. Al-Asadi HA, Al-Mansoori MH, Ajiya M, Hitam S, Saripan MI, Mahdi MA
    Opt Express, 2010 Oct 11;18(21):22339-47.
    PMID: 20941134 DOI: 10.1364/OE.18.022339
    We develop a theoretical model that can be used to predict stimulated Brillouin scattering (SBS) threshold in optical fibers that arises through the effect of Brillouin pump recycling technique. Obtained simulation results from our model are in close agreement with our experimental results. The developed model utilizes single mode optical fiber of different lengths as the Brillouin gain media. For 5-km long single mode fiber, the calculated threshold power for SBS is about 16 mW for conventional technique. This value is reduced to about 8 mW when the residual Brillouin pump is recycled at the end of the fiber. The decrement of SBS threshold is due to longer interaction lengths between Brillouin pump and Stokes wave.
  11. Hambali NA, Mahdi MA, Al-Mansoori MH, Abas AF, Saripan MI
    Opt Express, 2009 Jul 06;17(14):11768-75.
    PMID: 19582091
    We have investigated the characteristics of Brillouin-Erbium fiber laser (BEFL) with variation of Erbium-doped fiber amplifier (EDFA) locations in a ring cavity configuration. Three possible locations of the EDFA in the laser cavity have been studied. The experimental results show that the location of EDFA plays vital role in determining the output power and the tuning range. Besides the Erbium gain, Brillouin gain also contributes to the performance of the BEFL. By placing the EDFA next to the Brillouin gain medium (dispersion compensating fiber), the Brillouin pump signal is amplified thereby generating higher intensities of Brillouin Stokes line. This efficient process suppresses the free running self-lasing cavity modes from oscillating in cavity as a result of higher Stokes laser power and thus provide a wider tuning range. At the injected Brillouin pump power of 1.6 mW and the maximum 1480 nm pump power of 135 mW, the maximum Stokes laser power of 25.1 mW was measured and a tuning range of 50 nm without any self-lasing cavity modes was obtained.
  12. Hambali NA, Mahdi MA, Al-Mansoori MH, Saripan MI, Abas AF
    Appl Opt, 2009 Sep 20;48(27):5055-60.
    PMID: 19767918 DOI: 10.1364/AO.48.005055
    The operation of a single-wavelength Brillouin-erbium fiber laser (BEFL) system with a Brillouin pump preamplified technique for different output coupling ratios in a ring cavity is experimentally demonstrated. The characteristics of Brillouin Stokes power and tunability were investigated in this research. The efficiency of the BEFL operation was obtained at an optimum output coupling ratio of 95%. By fixing the Brillouin pump wavelength at 1550 nm while its power was set at 1.6 mW and the 1480 pump power was set to its maximum value of 135 mW, the Brillioun Stokes power was found to be 28.7 mW. The Stokes signal can be tuned within a range of 60 nm from 1520 to 1580 nm without appearances of the self-lasing cavity modes in the laser system.
  13. Jalalian A, Mashohor SB, Mahmud HR, Saripan MI, Ramli AR, Karasfi B
    Clin Imaging, 2013 May-Jun;37(3):420-6.
    PMID: 23153689 DOI: 10.1016/j.clinimag.2012.09.024
    Breast cancer is the most common form of cancer among women worldwide. Early detection of breast cancer can increase treatment options and patients' survivability. Mammography is the gold standard for breast imaging and cancer detection. However, due to some limitations of this modality such as low sensitivity especially in dense breasts, other modalities like ultrasound and magnetic resonance imaging are often suggested to achieve additional information. Recently, computer-aided detection or diagnosis (CAD) systems have been developed to help radiologists in order to increase diagnosis accuracy. Generally, a CAD system consists of four stages: (a) preprocessing, (b) segmentation of regions of interest, (c) feature extraction and selection, and finally (d) classification. This paper presents the approaches which are applied to develop CAD systems on mammography and ultrasound images. The performance evaluation metrics of CAD systems are also reviewed.
  14. Abdulhussain SH, Ramli AR, Saripan MI, Mahmmod BM, Al-Haddad SAR, Jassim WA
    Entropy (Basel), 2018 Mar 23;20(4).
    PMID: 33265305 DOI: 10.3390/e20040214
    The recent increase in the number of videos available in cyberspace is due to the availability of multimedia devices, highly developed communication technologies, and low-cost storage devices. These videos are simply stored in databases through text annotation. Content-based video browsing and retrieval are inefficient due to the method used to store videos in databases. Video databases are large in size and contain voluminous information, and these characteristics emphasize the need for automated video structure analyses. Shot boundary detection (SBD) is considered a substantial process of video browsing and retrieval. SBD aims to detect transition and their boundaries between consecutive shots; hence, shots with rich information are used in the content-based video indexing and retrieval. This paper presents a review of an extensive set for SBD approaches and their development. The advantages and disadvantages of each approach are comprehensively explored. The developed algorithms are discussed, and challenges and recommendations are presented.
  15. Dong X, Xu S, Liu Y, Wang A, Saripan MI, Li L, et al.
    Cancer Imaging, 2020 Aug 01;20(1):53.
    PMID: 32738913 DOI: 10.1186/s40644-020-00331-0
    BACKGROUND: Convolutional neural networks (CNNs) have been extensively applied to two-dimensional (2D) medical image segmentation, yielding excellent performance. However, their application to three-dimensional (3D) nodule segmentation remains a challenge.

    METHODS: In this study, we propose a multi-view secondary input residual (MV-SIR) convolutional neural network model for 3D lung nodule segmentation using the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset of chest computed tomography (CT) images. Lung nodule cubes are prepared from the sample CT images. Further, from the axial, coronal, and sagittal perspectives, multi-view patches are generated with randomly selected voxels in the lung nodule cubes as centers. Our model consists of six submodels, which enable learning of 3D lung nodules sliced into three views of features; each submodel extracts voxel heterogeneity and shape heterogeneity features. We convert the segmentation of 3D lung nodules into voxel classification by inputting the multi-view patches into the model and determine whether the voxel points belong to the nodule. The structure of the secondary input residual submodel comprises a residual block followed by a secondary input module. We integrate the six submodels to classify whether voxel points belong to nodules, and then reconstruct the segmentation image.

    RESULTS: The results of tests conducted using our model and comparison with other existing CNN models indicate that the MV-SIR model achieves excellent results in the 3D segmentation of pulmonary nodules, with a Dice coefficient of 0.926 and an average surface distance of 0.072.

    CONCLUSION: our MV-SIR model can accurately perform 3D segmentation of lung nodules with the same segmentation accuracy as the U-net model.

  16. Safri LS, Lip HTC, Saripan MI, Huei TJ, Krishna K, Md Idris MA, et al.
    Prim Care Diabetes, 2020 08;14(4):364-369.
    PMID: 31744790 DOI: 10.1016/j.pcd.2019.10.001
    AIMS: To evaluate the incidence and risk factors for carotid artery stenosis amongst asymptomatic type 2 diabetes from a single Malaysian tertiary institution.

    METHODS: This is a prospective cross-sectional study of asymptomatic type 2 diabetics selected from the outpatient ophthalmology and endocrine clinics for carotid duplex ultrasound scanning performed by a single radiologist. The duplex ultrasound criteria were based on the North American Symptomatic Carotid Endarterectomy Trial (NASCET) classification of carotid artery stenosis. Univariate and multivariate analysis was performed to identify possible risk factors of carotid artery stenosis.

    RESULTS: Amongst the 200 patients, the majority were males (56%) and Malay predominance (58.5%). There were 12/200 patients (6%) with mean age of 69.2 years identified to have carotid artery stenosis. Univariate analysis of patients with asymptomatic carotid artery stenosis identified older age of 69.2 years (p=0.027) and duration of exposure to diabetes of 17.9 years (p=0.024) as significant risk factors.

    CONCLUSION: Patients with longer exposure of diabetes and older age were risk factors of carotid artery stenosis in asymptomatic type 2 diabetics. These patients should be considered for selective screening of carotid artery stenosis during primary care visit for early identification and closer surveillance for stroke prevention.

  17. Haniff NSM, Abdul Karim MK, Osman NH, Saripan MI, Che Isa IN, Ibahim MJ
    Diagnostics (Basel), 2021 Aug 30;11(9).
    PMID: 34573915 DOI: 10.3390/diagnostics11091573
    Hepatocellular carcinoma (HCC) is considered as a complex liver disease and ranked as the eighth-highest mortality rate with a prevalence of 2.4% in Malaysia. Magnetic resonance imaging (MRI) has been acknowledged for its advantages, a gold technique for diagnosing HCC, and yet the false-negative diagnosis from the examinations is inevitable. In this study, 30 MR images from patients diagnosed with HCC is used to evaluate the robustness of semi-automatic segmentation using the flood fill algorithm for quantitative features extraction. The relevant features were extracted from the segmented MR images of HCC. Four types of features extraction were used for this study, which are tumour intensity, shape feature, textural feature and wavelet feature. A total of 662 radiomic features were extracted from manual and semi-automatic segmentation and compared using intra-class relation coefficient (ICC). Radiomic features extracted using semi-automatic segmentation utilized flood filling algorithm from 3D-slicer had significantly higher reproducibility (average ICC = 0.952 ± 0.009, p < 0.05) compared with features extracted from manual segmentation (average ICC = 0.897 ± 0.011, p > 0.05). Moreover, features extracted from semi-automatic segmentation were more robust compared to manual segmentation. This study shows that semi-automatic segmentation from 3D-Slicer is a better alternative to the manual segmentation, as they can produce more robust and reproducible radiomic features.
  18. Radzi SFM, Karim MKA, Saripan MI, Rahman MAA, Isa INC, Ibahim MJ
    J Pers Med, 2021 Sep 29;11(10).
    PMID: 34683118 DOI: 10.3390/jpm11100978
    Automated machine learning (AutoML) has been recognized as a powerful tool to build a system that automates the design and optimizes the model selection machine learning (ML) pipelines. In this study, we present a tree-based pipeline optimization tool (TPOT) as a method for determining ML models with significant performance and less complex breast cancer diagnostic pipelines. Some features of pre-processors and ML models are defined as expression trees and optimal gene programming (GP) pipelines, a stochastic search system. Features of radiomics have been presented as a guide for the ML pipeline selection from the breast cancer data set based on TPOT. Breast cancer data were used in a comparative analysis of the TPOT-generated ML pipelines with the selected ML classifiers, optimized by a grid search approach. The principal component analysis (PCA) random forest (RF) classification was proven to be the most reliable pipeline with the lowest complexity. The TPOT model selection technique exceeded the performance of grid search (GS) optimization. The RF classifier showed an outstanding outcome amongst the models in combination with only two pre-processors, with a precision of 0.83. The grid search optimized for support vector machine (SVM) classifiers generated a difference of 12% in comparison, while the other two classifiers, naïve Bayes (NB) and artificial neural network-multilayer perceptron (ANN-MLP), generated a difference of almost 39%. The method's performance was based on sensitivity, specificity, accuracy, precision, and receiver operating curve (ROC) analysis.
  19. Ibrahim B, Suppiah S, Ibrahim N, Mohamad M, Hassan HA, Nasser NS, et al.
    Hum Brain Mapp, 2021 06 15;42(9):2941-2968.
    PMID: 33942449 DOI: 10.1002/hbm.25369
    Resting-state fMRI (rs-fMRI) detects functional connectivity (FC) abnormalities that occur in the brains of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). FC of the default mode network (DMN) is commonly impaired in AD and MCI. We conducted a systematic review aimed at determining the diagnostic power of rs-fMRI to identify FC abnormalities in the DMN of patients with AD or MCI compared with healthy controls (HCs) using machine learning (ML) methods. Multimodal support vector machine (SVM) algorithm was the commonest form of ML method utilized. Multiple kernel approach can be utilized to aid in the classification by incorporating various discriminating features, such as FC graphs based on "nodes" and "edges" together with structural MRI-based regional cortical thickness and gray matter volume. Other multimodal features include neuropsychiatric testing scores, DTI features, and regional cerebral blood flow. Among AD patients, the posterior cingulate cortex (PCC)/Precuneus was noted to be a highly affected hub of the DMN that demonstrated overall reduced FC. Whereas reduced DMN FC between the PCC and anterior cingulate cortex (ACC) was observed in MCI patients. Evidence indicates that the nodes of the DMN can offer moderate to high diagnostic power to distinguish AD and MCI patients. Nevertheless, various concerns over the homogeneity of data based on patient selection, scanner effects, and the variable usage of classifiers and algorithms pose a challenge for ML-based image interpretation of rs-fMRI datasets to become a mainstream option for diagnosing AD and predicting the conversion of HC/MCI to AD.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links