Displaying all 8 publications

Abstract:
Sort:
  1. Sarker MR, Mohamed A, Mohamed R
    Micromachines (Basel), 2016 Sep 23;7(10).
    PMID: 30404344 DOI: 10.3390/mi7100171
    This paper presents a new method for a vibration-based piezoelectric energy harvesting system using a backtracking search algorithm (BSA)-based proportional-integral (PI) voltage controller. This technique eliminates the exhaustive conventional trial-and-error procedure for obtaining optimized parameter values of proportional gain (Kp), and integral gain (Ki) for PI voltage controllers. The generated estimate values of Kp and Ki are executed in the PI voltage controller that is developed through the BSA optimization technique. In this study, mean absolute error (MAE) is used as an objective function to minimize output error for a piezoelectric energy harvesting system (PEHS). The model for the PEHS is designed and analyzed using the BSA optimization technique. The BSA-based PI voltage controller of the PEHS produces a significant improvement in minimizing the output error of the converter and a robust, regulated pulse-width modulation (PWM) signal to convert a MOSFET switch, with the best response in terms of rise time and settling time under various load conditions.
  2. Riaz A, Sarker MR, Saad MHM, Mohamed R
    Sensors (Basel), 2021 Jul 26;21(15).
    PMID: 34372278 DOI: 10.3390/s21155041
    This paper reviews energy storage systems, in general, and for specific applications in low-cost micro-energy harvesting (MEH) systems, low-cost microelectronic devices, and wireless sensor networks (WSNs). With the development of electronic gadgets, low-cost microelectronic devices and WSNs, the need for an efficient, light and reliable energy storage device is increased. The current energy storage systems (ESS) have the disadvantages of self-discharging, energy density, life cycles, and cost. The ambient energy resources are the best option as an energy source, but the main challenge in harvesting energy from ambient sources is the instability of the source of energy. Due to the explosion of lithium batteries in many cases, and the pros associated with them, the design of an efficient device, which is more reliable and efficient than conventional batteries, is important. This review paper focused on the issues of the reliability and performance of electrical ESS, and, especially, discussed the technical challenges and suggested solutions for ESS (batteries, supercapacitors, and for a hybrid combination of supercapacitors and batteries) in detail. Nowadays, the main market of batteries is WSNs, but in the last decade, the world's attention has turned toward supercapacitors as a good alternative of batteries. The main advantages of supercapacitors are their light weight, volume, greater life cycle, turbo charging/discharging, high energy density and power density, low cost, easy maintenance, and no pollution. This study reviews supercapacitors as a better alternative of batteries in low-cost electronic devices, WSNs, and MEH systems.
  3. Rahman H, Ali H, Din RU, Ahmad I, Sarker MR, Ali SHM
    Molecules, 2021 Oct 27;26(21).
    PMID: 34770905 DOI: 10.3390/molecules26216497
    Surface plasmon (SP)-induced spectral hole burning (SHB) at the silver-dielectric interface is investigated theoretically. We notice a typical lamb dip at a selective frequency, which abruptly reduces the absorption spectrum of the surface plasmons polaritons (SPP). Introducing the spontaneous generated coherence (SGC) in the atomic medium, the slope of dispersion becomes normal. Additionally, slow SPP propagation is also noticed at the interface. The spectral hole burning dip is enhanced with the SGC effect and can be modified and controlled with the frequency and intensity of the driving fields. The SPP propagation length at the hole-burning region is greatly enhanced under the effect of SGC. A propagation length of the order of 600 µm is achieved for the modes, which is a remarkable result. The enhancement of plasmon hole burning under SGC will find significant applications in sensing technology, optical communication, optical tweezers and nano-photonics.
  4. Ullah A, Khan AS, Sarker MR, Iqbal MJ, Khan HU, Tirth V, et al.
    ACS Omega, 2023 Apr 04;8(13):12372-12378.
    PMID: 37033827 DOI: 10.1021/acsomega.3c00128
    The low-temperature sintering of (Bi0.5Na0.5)TiO3-based ceramics can be achieved by sintering aid CuO. Piezoelectric ceramics (1 - x)[0.90(Bi0.5Na0.5)TiO3 - 0.10SrTiO3] - xCuO (BNT-ST-Cu) with x = 0, 0.01, 0.02, 0.03, and 0.04 were prepared through the mixed oxide route. A tetragonal structure was indexed for the undoped sample. Its structure was found to be changed to a pseudocubic when Cu was added. For undoped Cu samples, the sintering temperature (T s) for sufficient densification was 1160 °C. However, T s was reduced to 1090-1120 °C for Cu-added specimens. Field emission scanning electron microscopy (FE-SEM) showed a uniform and dense grain morphology for all samples. The maximum dielectric constant temperature (T m) was decreased with the doping concentration of Cu and applied frequency. The strain was increased with Cu concentration and had the maximum value of 500 pm/V for the sample x = 0.02 with symmetric and slim strain loops.
  5. Muhammad F, Tahir M, Zeb M, Kalasad MN, Mohd Said S, Sarker MR, et al.
    Sci Rep, 2020 Mar 16;10(1):4828.
    PMID: 32179797 DOI: 10.1038/s41598-020-61602-1
    This paper reports the potential application of cadmium selenide (CdSe) quantum dots (QDs) in improving the microelectronic characteristics of Schottky barrier diode (SBD) prepared from a semiconducting material poly-(9,9-dioctylfluorene) (F8). Two SBDs, Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO, are fabricated by spin coating a 10 wt% solution of F8 in chloroform and 10:1 wt% solution of F8:CdSe QDs, respectively, on a pre-deposited poly(3-hexylthiophene) (P3HT) on indium tin oxide (ITO) substrate. To study the electronic properties of the fabricated devices, current-voltage (I-V) measurements are carried out at 25 °C in dark conditions. The I-V curves of Ag/F8/P3HT/ITO and Ag/F8-CdSe QDs/P3HT/ITO SBDs demonstrate asymmetrical behavior with forward bias current rectification ratio (RR) of 7.42 ± 0.02 and 142 ± 0.02, respectively, at ± 3.5 V which confirm the formation of depletion region. Other key parameters which govern microelectronic properties of the fabricated devices such as charge carrier mobility (µ), barrier height (ϕb), series resistance (Rs) and quality factor (n) are extracted from their corresponding I-V characteristics. Norde's and Cheung functions are also applied to characterize the devices to study consistency in various parameters. Significant improvement is found in the values of Rs, n, and RR by 3, 1.7, and 19 times, respectively, for Ag/F8-CdSe QDs/P3HT/ITO SBD as compared to Ag/F8/P3HT/ITO. This enhancement is due to the incorporation of CdSe QDs having 3-dimensional quantum confinement and large surface-to-volume area. Poole-Frenkle and Richardson-Schottky conduction mechanisms are also discussed for both of the devices. Morphology, optical bandgap (1.88 ± 0.5 eV) and photoluminescence (PL) spectrum of CdSe QDs with a peak intensity at 556 nm are also reported and discussed.
  6. Sarker MR, Riaz A, Lipu MSH, Md Saad MH, Ahmad MN, Kadir RA, et al.
    Heliyon, 2024 Mar 30;10(6):e27778.
    PMID: 38509887 DOI: 10.1016/j.heliyon.2024.e27778
    Micro-energy harvesting (MEH) is a technology of renewable power generation which is a key technology for hosting the future low-powered electronic devices for wireless sensor networks (WSNs) and, the Internet of Things (IoT). Recent technological advancements have given rise to several resources and technologies that are boosting particular facets of society. Many researchers are now interested in studying MEH systems for ultra-low power IoT sensors and WSNs. A comprehensive study of IoT will help to manage a single MEH as a power source for multiple WSNs. The popular database from Scopus was used in this study to perform a review analysis of the MEH system for ultra-low power IoT sensors. All relevant and important literature studies published in this field were statistically analysed using a review analysis method by VOSviewer software, and research gaps, challenges and recommendations of this field were investigated. The findings of the study indicate that there has been an increasing number of literature studies published on the subject of MEH systems for IoT platforms throughout time, particularly from 2013 to 2023. The results demonstrate that 67% of manuscripts highlight problem-solving, modelling and technical overview, simulation, experimental setup and prototype. In observation, 27% of papers are based on bibliometric analysis, systematic review, survey, review and based on case study, and 2% of conference manuscripts are based on modelling, simulation, and review analysis. The top-cited articles are published in 5 different countries and 9 publishers including IEEE 51%, Elsevier 16%, MDPI 10% and others. In addition, several MEH system-related problems and challenges are noted to identify current limitations and research gaps, including technical, modelling, economic, power quality, and environmental concerns. Also, the study offers guidelines and recommendations for the improvement of future MEH technology to increase its energy efficiency, topologies, design, operational performance, and capabilities. This study's detailed information, perceptive analysis, and critical argument are expected to improve MEH research's viable future.
  7. Uddin I, Awan HH, Khalid M, Khan S, Akbar S, Sarker MR, et al.
    Sci Rep, 2024 Sep 06;14(1):20819.
    PMID: 39242695 DOI: 10.1038/s41598-024-71568-z
    RNA modifications play an important role in actively controlling recently created formation in cellular regulation mechanisms, which link them to gene expression and protein. The RNA modifications have numerous alterations, presenting broad glimpses of RNA's operations and character. The modification process by the TET enzyme oxidation is the crucial change associated with cytosine hydroxymethylation. The effect of CR is an alteration in specific biochemical ways of the organism, such as gene expression and epigenetic alterations. Traditional laboratory systems that identify 5-hydroxymethylcytosine (5hmC) samples are expensive and time-consuming compared to other methods. To address this challenge, the paper proposed XGB5hmC, a machine learning algorithm based on a robust gradient boosting algorithm (XGBoost), with different residue based formulation methods to identify 5hmC samples. Their results were amalgamated, and six different frequency residue based encoding features were fused to form a hybrid vector in order to enhance model discrimination capabilities. In addition, the proposed model incorporates SHAP (Shapley Additive Explanations) based feature selection to demonstrate model interpretability by highlighting the high contributory features. Among the applied machine learning algorithms, the XGBoost ensemble model using the tenfold cross-validation test achieved improved results than existing state-of-the-art models. Our model reported an accuracy of 89.97%, sensitivity of 87.78%, specificity of 94.45%, F1-score of 0.8934%, and MCC of 0.8764%. This study highlights the potential to provide valuable insights for enhancing medical assessment and treatment protocols, representing a significant advancement in RNA modification analysis.
  8. Ullah K, Khan SA, Zaman A, Sarker MR, Ali A, Tirth V, et al.
    ACS Omega, 2023 Aug 22;8(33):29959-29965.
    PMID: 37636967 DOI: 10.1021/acsomega.3c00541
    Nanomaterials (NMs) with structural, optical, and dielectric properties are called functional or smart materials and have favorable applications in various fields of material science and nanotechnology. Pure and Co-doped MgAl2O4 were synthesized by using the sol-gel combustion method. A systematic investigation was carried out to understand the effects of the Co concentration on the crystalline phase, morphology, and optical and dielectric properties of Co-doped MgAl2O4. X-ray diffraction confirmed the cubic spinel structure with the Fd3̅m space group, and there was no impurity phase, while the surface morphology of the samples was investigated by scanning electron microscopy. The dielectric properties of the synthesized material are investigated using an LCR meter with respect to the variation in frequency (1-2 GHz), and their elemental composition has been examined through the energy-dispersive X-ray technique. The existence of the metal-oxygen Mg-Al-O bond has been confirmed by Fourier transform infrared spectroscopy. The value of the dielectric constant decreases with the increasing frequency and Co concentration. The optical behaviors of the Co2+-doped MgAl2O4 reveal that the optical properties were enhanced by increasing the cobalt concentration, which ultimately led to a narrower band gap, which make them exquisite and suitable for energy storage applications, especially for super capacitors. This work aims to focus on the effect of cobalt ions in different concentrations on structural, optical, and dielectric properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links