Displaying all 10 publications

  1. Endo H, Fukuta K, Kimura J, Sasaki M, Stafford BJ
    J. Vet. Med. Sci., 2004 Oct;66(10):1229-35.
    PMID: 15528854
    We examined the geographical variation of the skull size and shape of the lesser mouse deer (Tragulus javanicus) from Laos, Thailand, Peninsular Malaysia, Sumatra, Java, Borneo, Langkawi and some Islands of Tenasserim in Myanmar. Although the influence of the climatic condition on skull size was not confirmed in the mainland populations, the skull became rostro-caudally longer in the populations of Tenasserim and Sumatra because of island isolation effect. The skull size was classified into the following three clusters of localities from the matrix of Q-mode correlation coefficients: 1) Langkawi and Tenasserim, 2) Laos and Thailand, 3) Sumatra and Borneo. The skulls in the population of Java belong to the cluster of Langkawi and Tenasserim in male, however were morphologically similar to those in the cluster of Borneo and Sumatra. The canonical discriminant analysis pointed out that the Laos and Tenasserim populations were separated from the other ones and that the populations of Sumatra, Java and Borneo were intermingled each other.
  2. Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T
    Bioresour. Technol., 2016 Jan;199:258-264.
    PMID: 26253419 DOI: 10.1016/j.biortech.2015.07.103
    The aim of this work was to characterize the natural low transition temperature mixtures (LTTMs) as promising green solvents for biomass pretreatment with the critical characteristics of cheap, biodegradable and renewable, which overcome the limitations of ionic liquids (ILs). The LTTMs were derived from inexpensive commercially available hydrogen bond acceptor (HBA) and l-malic acid as the hydrogen bond donor (HBD) in distinct molar ratios of starting materials and water. The peaks involved in the H-bonding shifted and became broader for the OH groups. The thermal properties of the LTTMs were not affected by water while the biopolymers solubility capacity of LTTMs was improved with the increased molar ratio of water and treatment temperature. The pretreatment of oil palm biomass was consistence with the screening on solubility of biopolymers. This work provides a cost-effective alternative to utilize microwave hydrothermal extracted green solvents such as malic acid from natural fruits and plants.
  3. Hayashida A, Endo H, Sasaki M, Oshida T, Kimura J, Waengsothorn S, et al.
    J. Vet. Med. Sci., 2007 Feb;69(2):149-57.
    PMID: 17339759
    The geographical variation of the gray-bellied squirrel (Callosciurus caniceps) was examined using osteometry of skull in Southeast Asia. From the principal component analysis (PCA), the plots of the northern localities from Nan to Kanchanaburi and those of the southern localities from Narathiwat to Kuala Lumpur in male were completely separated. In female, the plots of the locality from Uttradit to Kanchanaburi and those of the locality from Pattani to Negri Sembilan were completely separated. We called these northern localities and southern localities which are distinguished by the PCA as N group and S group. The size and shape of the skulls of these squirrels indicated the differences between N group and S group from t-test and U-test. These results may be influenced by the two transitions of the phytogeography around the southernmost locality in N group and the northernmost locality in S group in the peninsular Thailand and Malay Peninsula. Localities which are located between N and S groups were called the Middle (M) group. From the PCA among N, S groups and each locality of M group, the plots of localities such as Prachuap Khiri Khan, Chumphon, Krabi, Nakhon Si Thammarat and Trang in both sexes of M group could not be separated from those of N and S groups. We suggest that the sympatric distribution of N and S groups and the hybrid of N and S populations may be seen in these localities of M group.
  4. Agungpriyono S, Kurohmaru M, Prasetyaningtyas WE, Kaspe L, Leus KY, Sasaki M, et al.
    Anat Histol Embryol, 2007 Oct;36(5):343-8.
    PMID: 17845223
    The distribution of lectin bindings in the testis of babirusa, Babyrousa babyrussa (Suidae) was studied histochemically using 10 biotinylated lectins, Peanut agglutinin (PNA), Ricinus communis agglutinin (RCA I), Dolichos biflorus agglutinin (DBA), Vicia villosa agglutinin (VVA), Soybean agglutinin (SBA), Wheat germ agglutinin (WGA), Lens culinaris agglutinin (LCA), Pisum sativum agglutinin (PSA), Concanavalin A(Con A) and Ulex europaeus agglutinin (UEA I). Nine of 10 lectins showed a variety of staining patterns in the seminiferous epithelium and interstitial cells. The acrosome of Golgi-, cap- and acrosome-phase spermatids displayed various PNA, RCA I, VVA, SBA and WGA bindings, indicating the presence of glycoconjugates with D-galactose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine sugar residues respectively. No affinity was detected in the acrosome of late spermatids. LCA, PSA and Con A which have affinity for D-mannose and D-glucose sugar residues were positive in the cytoplasm of spermatids and spermatocytes. DBA was positive only in spermatogonia. In addition to DBA, positive binding in spermatogonia was found for VVA, WGA and Con A, suggesting the distribution of glycoconjugates with N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, D-mannose and D-glucose sugar residues. Sertoli cells were stained intensely with RCA I, WGA and Con A. In Leydig cells, RCA I and Con A were strongly positive, while WGA, LCA and PSA reactions were weak to moderate. The present findings showed that the distribution pattern of lectin binding in the testis of babirusa is somewhat different from that of pig or other mammals reported previously.
  5. Endo H, Kimura J, Oshida T, Stafford BJ, Rerkamnuaychoke W, Nishida T, et al.
    J. Vet. Med. Sci., 2003 Nov;65(11):1179-83.
    PMID: 14665745
    Skulls of the red-cheeked squirrel (Dremomys rufigenis) from various geographical locations: Malaysia (peninsular area), Vietnam (south district)-Laos, and Thailand (north district) were osteometrically examined. The skull size of the squirrels in the southern (Malaysia) population was fundamentally larger than that in the northern (Vietnam, Laos and Thailand) populations. The proportion indices indicated that the splanchnocranium was relatively longer in the Malaysia population, and that the interorbital space was narrower in Vietnam-Laos, and Thailand populations. We suggest that the long nose and laterally-oriented orbits in the skull may be better adapted for terrestrial-insectivorous life in the Malaysia population and the binocular sense facilitated by rostrally-oriented eyes contributes to the arboreal-fruit eating behavior in the two northern populations. The Malaysia population was clearly distinguished from the other populations by the principal component analysis. We suggest that the geographical barrier of the Isthmus of Kra influences the morphological variation of the skull among the squirrel populations.
  6. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T
    Bioresour. Technol., 2017 Nov;244(Pt 1):941-948.
    PMID: 28847084 DOI: 10.1016/j.biortech.2017.08.043
    This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H2O2. Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass.
  7. Yiin CL, Yusup S, Quitain AT, Uemura Y, Sasaki M, Kida T
    Bioresour. Technol., 2018 May;255:189-197.
    PMID: 29414166 DOI: 10.1016/j.biortech.2018.01.132
    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment.
  8. Yiin CL, Quitain AT, Yusup S, Uemura Y, Sasaki M, Kida T
    Bioresour. Technol., 2018 Aug;261:361-369.
    PMID: 29680702 DOI: 10.1016/j.biortech.2018.04.039
    Natural hydro-low-transition-temperature mixtures (NH-LTTMs) tend to be the most favorable next-generation green solvents for biomass pretreatment, as they are cheap and environmental friendly. The amount of water bound into the NH-LTTMs greatly affected their thermal stability, whereby the highest thermal stability was observed with the water content of 7.6 wt%. It is worth noting that, the highest molar transition energy of NH-LTTMs (47.57 kcal mol-1), which indicated the highest solubility, was optimized with the molar ratio of hydrogen bond donor (HBD)-hydrogen bond acceptor (HBA)-water (2:4:3) at a temperature of 60 °C. Hydrogen bonding networks of the NH-LTTMs, which led to the dissolution of biomass, were confirmed by the alteration in the peaks of the involved bonds and resonance signal to lower field through FTIR and 1H NMR spectra, respectively. The components evidenced in high-resolution mass spectra of extracted lignin showed its high potential to be valorized into useful fuels and chemicals.
  9. Gurdeep Singh HK, Yusup S, Quitain AT, Kida T, Sasaki M, Cheah KW, et al.
    Environ Sci Pollut Res Int, 2019 Nov;26(33):34039-34046.
    PMID: 30232774 DOI: 10.1007/s11356-018-3223-4
    Employment of edible oils as alternative green fuel for vehicles had raised debates on the sustainability of food supply especially in the third-world countries. The non-edible oil obtained from the abundantly available rubber seeds could mitigate this issue and at the same time reduce the environmental impact. Therefore, this paper investigates the catalytic cracking reaction of a model compound named linoleic acid that is enormously present in the rubber seed oil. Batch-scale experiments were conducted using 8.8 mL Inconel batch reactor having a cyclic horizontal swing span of 2 cm with a frequency of 60 cycles per minute at 450 °C under atmospheric condition for 90 min. The performance of HZSM-5, HBeta, HFerrierite, HMordenite and HY catalysts was tested for their efficiency in favouring gasoline range hydrocarbons. The compounds present in the organic liquid product were then analysed using GC-MS and classified based on PIONA which stands for paraffin, isoparaffin, olefin, naphthenes and aromatics respectively. The results obtained show that HZSM-5 catalyst favoured gasoline range hydrocarbons that were rich in aromatics compounds and promoted the production of desired isoparaffin. It also gave a higher cracking activity; however, large gaseous as by-products were produced at the same time.
  10. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links