Displaying all 12 publications

  1. Salih M, Shaharuddin B, Abdelrazeg S
    Curr Stem Cell Res Ther, 2020;15(3):211-218.
    PMID: 31995019 DOI: 10.2174/1574888X15666200129145251
    Organ and tissue transplantation are limited by the scarcity of donated organs or tissue sources. The success of transplantation is limited by the risk of disease transmission and immunological- related rejection. There is a need for new strategies and innovative solutions to make transplantation readily available, safer and with less complications to increase the success rates. Accelerating progress in stem cell biology and biomaterials development have pushed tissue and organ engineering to a higher level. Among stem cells repertoire, Mesenchymal Stem Cells (MSC) are gaining interest and recognized as a cell population of choice. There is accumulating evidence that MSC growth factors, its soluble and insoluble proteins are involved in several key signaling pathways to promote tissue development, cellular differentiation and regeneration. MSC as multipotent non-hematopoietic cells with paracrine factors is advantageous for regenerative therapies. In this review, we discussed and summarized the important features of MSC including its immunomodulatory properties, mechanism of homing in the direction of tissue injury, licensing of MSC and the role of MSC soluble factors in cell-free therapy. Special consideration is highlighted on the rapidly growing research interest on the roles of MSC in ocular surface regeneration.
  2. Jusoh S, Shaharuddin B, Wan Hitam WH
    Clin Exp Ophthalmol, 2011 Jan;39(1):15-22.
    PMID: 20659136 DOI: 10.1111/j.1442-9071.2010.02385.x
    This study aims to assess the optic disc characteristics in healthy adult Malays and to correlate them with age, gender and refractive errors.
  3. Wajih WA, Shaharuddin B, Razak NH
    J Oral Maxillofac Surg, 2011 Jun;69(6):1740-4.
    PMID: 21272979 DOI: 10.1016/j.joms.2010.07.053
    A normally restored orbital structure after reconstructive surgery would accelerate the return of orbital function. The aim of the present study was to compare the outcomes of 2 orbital implants: autogenous grafts and porous polyethylene (Medpor).
  4. Shaharuddin B, Ahmad S, Md Latar N, Ali S, Meeson A
    Stem Cells Transl Med, 2017 03;6(3):761-766.
    PMID: 28297580 DOI: 10.5966/sctm.2016-0175
    Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Stem Cells Translational Medicine 2017;6:761-766.
  5. Ang SL, Shaharuddin B, Chuah JA, Sudesh K
    Int J Biol Macromol, 2020 Feb 15;145:173-188.
    PMID: 31866541 DOI: 10.1016/j.ijbiomac.2019.12.149
    Polyhydroxyalkanoates (PHAs) are biodegradable polyesters produced by microorganisms, under unbalanced growth conditions, as a carbon storage compound. PHAs are composed of various monomers such as 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). Silk fibroin (SF) derived from Bombyx mori cocoons, is a widely studied protein polymer commonly used for biomaterial applications. In this study, non-woven electrospun films comprising a copolymer of 3HB and 3HHx [P(3HB-co-3HHx)], SF and their blends were prepared by electrospinning technique. The growth and osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were studied using different types of fabricated electrospun films. The differentiation study revealed that electrospun P(3HB-co-3HHx)/SF film supports the differentiation of hUC-MSCs into the osteogenic lineage, confirmed by histological analysis using Alizarin Red staining, energy dispersive X-ray (EDX) and quantitative real-time PCR analysis (qPCR). Electrospun P(3HB-co-3HHx)/SF film up-regulated the expression of osteogenic marker genes, alkaline phosphatase (ALP) and osteocalcin (OCN), by 1.6-fold and 2.8-fold respectively, after 21 days of osteogenic induction. In conclusion, proliferation and osteogenic differentiation of hUC-MSCs were enhanced through the blending of P(3HB-co-3HHx) and SF. The results from this study suggest that electrospun P(3HB-co-3HHx)/SF film is a promising biomaterial for bone tissue engineering.
  6. Tan JJ, Azmi SM, Yong YK, Cheah HL, Lim V, Sandai D, et al.
    PLoS One, 2014;9(5):e96800.
    PMID: 24802273 DOI: 10.1371/journal.pone.0096800
    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
  7. Jasman AA, Shaharuddin B, Noor RA, Ismail S, Ghani ZA, Embong Z
    BMC Ophthalmol, 2010;10:20.
    PMID: 20738840 DOI: 10.1186/1471-2415-10-20
    Despite growing number of intraocular lens power calculation formulas, there is no evidence that these formulas have good predictive accuracy in pediatric, whose eyes are still undergoing rapid growth and refractive changes. This study is intended to compare the prediction error and the accuracy of predictability of intraocular lens power calculation in pediatric patients at 3 month post cataract surgery with primary implantation of an intraocular lens using SRK II versus Pediatric IOL Calculator for pediatric intraocular lens calculation. Pediatric IOL Calculator is a modification of SRK II using Holladay algorithm. This program attempts to predict the refraction of a pseudophakic child as he grows, using a Holladay algorithm model. This model is based on refraction measurements of pediatric aphakic eyes. Pediatric IOL Calculator uses computer software for intraocular lens calculation.
  8. Ismail S, Khairy-Shamel ST, Hussein A, Shaharuddin B, Embong Z, Ibrahim M
    J Pediatr Ophthalmol Strabismus, 2010 Mar-Apr;47(2):111-3.
    PMID: 20349906 DOI: 10.3928/01913913-20100308-11
    The authors describe recurrent lens dislocation into the anterior chamber in a young girl with homocystinuria. The patient's 12-year-old sister died after a cerebrovascular accident caused by the same disease. This report highlights the importance of early dietary restrictions and treatment.
  9. Shaharuddin B, Osei-Bempong C, Ahmad S, Rooney P, Ali S, Oldershaw R, et al.
    Regen Med, 2016 Apr;11(3):273-86.
    PMID: 26965478 DOI: 10.2217/rme-2016-0009
    To isolate and characterize limbal mesenchymal stem cells (LMSCs) from human corneoscleral rings.
  10. Ng WH, Ramasamy R, Yong YK, Ngalim SH, Lim V, Shaharuddin B, et al.
    Regen Ther, 2019 Dec;11:8-16.
    PMID: 31193142 DOI: 10.1016/j.reth.2019.03.006
    Objective: Myocardial infarction remains the number one killer disease worldwide. Cellular therapy using cardiac c-kit cells (CCs) are capable of regenerating injured heart. Previous studies showed mesenchymal stem cell-derived (MSC) extracellular matrices can provide structural support and are capable of regulating stem cell functions and differentiation. This study aimed to evaluate the effects of human MSC-derived matrices for CC growth and differentiation.

    Methods: Human Wharton's Jelly-derived MSCs were cultured in ascorbic acid supplemented medium for 14 days prior to decellularisation using two methods. 1% SDS/Triton X-100 (ST) or 20 mM ammonia/Triton X-100 (AT). CCs isolated from 4-week-old C57/BL6N mice were cultured on the decellularised MSC matrices, and induced to differentiate into cardiomyocytes in cardiogenic medium for 21 days. Cardiac differentiation was assessed by immunocytochemistry and qPCR. All data were analysed using ANOVA.

    Results: In vitro decellularisation using ST method caused matrix delamination from the wells. In contrast, decellularisation using AT improved the matrix retention up to 30% (p 

  11. Ng WH, Yong YK, Ramasamy R, Ngalim SH, Lim V, Shaharuddin B, et al.
    Int J Mol Sci, 2019 Nov 06;20(22).
    PMID: 31698679 DOI: 10.3390/ijms20225519
    Cardiac c-kit cells show promise in regenerating an injured heart. While heart disease commonly affects elderly patients, it is unclear if autologous cardiac c-kit cells are functionally competent and applicable to these patients. This study characterised cardiac c-kit cells (CCs) from aged mice and studied the effects of human Wharton's Jelly-derived mesenchymal stem cells (MSCs) on the growth kinetics and cardiac differentiation of aged CCs in vitro. CCs were isolated from 4-week- and 18-month-old C57/BL6N mice and were directly co-cultured with MSCs or separated by transwell insert. Clonogenically expanded aged CCs showed comparable telomere length to young CCs. However, these cells showed lower Gata4, Nkx2.5, and Sox2 gene expressions, with changes of 2.4, 3767.0, and 4.9 folds, respectively. Direct co-culture of both cells increased aged CC migration, which repopulated 54.6 ± 4.4% of the gap area as compared to aged CCs with MSCs in transwell (42.9 ± 2.6%) and CCs without MSCs (44.7 ± 2.5%). Both direct and transwell co-culture improved proliferation in aged CCs by 15.0% and 16.4%, respectively, as traced using carboxyfluorescein succinimidyl ester (CFSE) for three days. These data suggest that MSCs can improve the growth kinetics of aged CCs. CCs retaining intact telomere are present in old hearts and could be obtained based on their self-renewing capability. Although these aged CCs with reduced growth kinetics are improved by MSCs via cell-cell contact, the effect is minimal.
  12. Azmi SM, Salih M, Abdelrazeg S, Roslan FF, Mohamed R, Tan JJ, et al.
    Regen Med, 2020 03;15(3):1381-1397.
    PMID: 32253974 DOI: 10.2217/rme-2019-0103
    Aim: As a strategy to improve the outcome of ex vivo cultivated corneal epithelial transplantation, the role of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) is investigated in promoting corneal epithelial growth and functions. Materials & methods: Human telomerase-immortalized corneal epithelial cells were characterized and its functions evaluated by scratch migration assay, cellular senescence, HLA expression and spheres formation with hUC-MSC. Results: Expression of corneal epithelial markers was influenced by the duration and method of co-culture. Indirect co-culture improved cellular migration and delayed senescence when treated after 3 and 5 days. hUC-MSC downregulated expression of HLA Class I and II in IFN-γ-stimulated human telomerase-immortalized corneal epithelial cells. Conclusion: hUC-MSC promote corneal epithelial growth and functions after treatment with hUC-MSC.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links