Displaying all 7 publications

Abstract:
Sort:
  1. Lin TY, Chai WS, Chen SJ, Shih JY, Koyande AK, Liu BL, et al.
    Chemosphere, 2021 May;270:128615.
    PMID: 33077189 DOI: 10.1016/j.chemosphere.2020.128615
    This work studied the potential of using eggshell (ES) (200-300 μm) waste as adsorbent for sequential removal of heavy metals, soluble microbial products, and dye wastes. In this study, among soluble microbial products, chicken egg white (CEW) proteins were selected as simulated contaminants. ES was applied to capture heavy metal ions (e.g., Cu2+ and Zn2+) and the formed eggshell metal (ES-M) complex was use to absorb soluble microbial products (e.g., soluble proteins), followed by subsequent removal of dyes from aqueous solutions using ES-M-CEW adsorbent. The experimental conditions for the adsorption of CEW proteins by ES-M include shaking rate, adsorption pH, isothermal and kinetic studies. The maximum protein adsorption by ES-Zn and ES-Cu were 175.67 and 153.65 mg/g, respectively. Optimal removal efficiencies of the ES-M-CEW particles for Acid Orange (AO7) and Toluidine blue (TBO) dyes were at pH 2 and 12, respectively, achieving performance of 75.38 and 114.18 mg/g, respectively. The removal of TBO dye by ES-M-CEW adsorbent was equilibrated at 5 min. The results showed that low cost and simple preparation of the modified ES particles are feasible for treating various wastewaters.
  2. Lu S, Shih JY, Jang TW, Liam CK, Yu Y
    Adv Ther, 2021 May;38(5):2038-2053.
    PMID: 33730350 DOI: 10.1007/s12325-021-01696-9
    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are a standard of care in the first-line treatment of patients with EGFR mutation-positive metastatic non-small-cell lung cancer (NSCLC). EGFR mutations are relatively common in Asian patients with NSCLC, and there is an increasing number of studies supporting the effectiveness of the second-generation TKI afatinib in routine clinical practice in Asia. This article reviews these real-world studies investigating afatinib as first-line treatment for EGFR mutation-positive NSCLC in Asian patients. Evidence from real-world studies with afatinib in this patient population supports findings from randomized controlled trials (RCTs) showing that afatinib is associated with more favorable outcomes compared with the first-generation EGFR TKIs. The effectiveness of afatinib has also been shown in real-world studies in Asian patients with poor prognostic factors, who are often under-represented or excluded from RCTs, such as those with uncommon EGFR mutations, brain metastases, or poor performance status, and elderly patients. The tolerability profile of afatinib in the real-world setting reflects that seen in RCTs, with no new safety signals reported in real-world studies in Asian patients with EGFR mutation-positive NSCLC. Dose-modification strategies also seem to be effective in the real world, with results of the RealGido study, which included 44% Asian patients, confirming findings from prospective clinical trials showing that tolerability-guided afatinib dose modifications can reduce the incidence of adverse events without adversely affecting clinical outcomes. While further research, including clinical trial data, is needed, real-world data have also demonstrated the feasibility of sequential afatinib followed by the third-generation TKI osimertinib in T790M-positive EGFR mutation-positive patients, which showed longer overall survival. Together, these real-world results demonstrate the real-world clinical effectiveness of afatinib as first-line treatment for patients with EGFR mutation-positive NSCLC.
  3. Wu ZH, Shih JY, Li YJ, Tsai YD, Hung TF, Karuppiah C, et al.
    Nanomaterials (Basel), 2022 Jan 26;12(3).
    PMID: 35159754 DOI: 10.3390/nano12030409
    To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
  4. Wu XW, Seenivasan M, Karuppiah C, Zhang BR, Shih JY, James Li YJ, et al.
    Heliyon, 2024 Jul 30;10(14):e34436.
    PMID: 39082013 DOI: 10.1016/j.heliyon.2024.e34436
    Current commercial separators used in lithium-ion batteries have inherent flaws, especially poor thermal stability, which pose substantial safety risks. This study introduces a high-safety composite membrane made from electrospun poly(vinyl alcohol)-melamine (PVAM) and polyvinylidene fluoride (PVDF) polymer solutions via a dip coating method, designed for high-voltage battery systems. The poly(vinyl alcohol) and melamine components enhance battery safety, while the PVDF coating improves lithium-ion conductivity. The dip-coated PVDF/Esp-PVAM composite separators were evaluated for electrolyte uptake, contact angle, thermal stability, porosity, electrochemical stability and ionic conductivity. Notably, our Dip 1 % PVDF@Esp-PVAM composite separator exhibited excellent wettability and a lithium-ion conductivity of approximately 7.75 × 10⁻⁴ S cm⁻1 at room temperature. These separators outperformed conventional PE separators in half-cells with Ni-rich NCM811 cathodes, showing exceptional cycling stability with 93.4 % capacity retention after 100 cycles at 1C/1C, as compared to 84.8 % for PE separators. Our Dip 1 % PVDF@Esp-PVAM composite separator demonstrates significant potential for enhancing the long-term durability and high-rate performance of lithium-ion batteries, making it a promising option for long-term energy storage applications.
  5. Wu XW, Karuppiah C, Wu YS, Zhang BR, Hsu LF, Shih JY, et al.
    J Colloid Interface Sci, 2024 Mar 15;658:699-713.
    PMID: 38141392 DOI: 10.1016/j.jcis.2023.12.098
    Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).
  6. Chang GC, Lam DC, Tsai CM, Chen YM, Shih JY, Aggarwal S, et al.
    Int J Clin Oncol, 2021 May;26(5):841-850.
    PMID: 33783657 DOI: 10.1007/s10147-021-01869-0
    BACKGROUND: This study evaluated outcomes among patients with advanced/metastatic non-small-cell lung cancer (NSCLC) treated at Asian centers participating in the global named-patient-use (NPU) program for afatinib.

    METHODS: Patients had progressed after initial benefit with erlotinib or gefitinib, and/or had an EGFR or HER2 mutation, had no other treatment options, and were ineligible for afatinib trials. The recommended starting dose of afatinib was 50 mg/day. Dose modifications were allowed, and afatinib was continued as long as deemed beneficial. Response and survival information was provided voluntarily. Safety reporting was mandatory.

    RESULTS: 2242 patients (26% aged ≥ 70 years, 96% with adenocarcinoma) received afatinib at centers in 10 Asian countries. Most were heavily pre-treated, including prior treatment with erlotinib or gefitinib. Of 1281 patients tested, 1240 had EGFR mutations (common: 1034/1101; uncommon: 117/1101). There were no new safety signals, the most common adverse events being rash and diarrhea. Objective response rate (ORR) was 24% overall (n = 431 with data available), 27% for patients with common EGFR mutations (n = 230) and 28% for those with uncommon mutations (n = 32); median time to treatment failure (TTF) in these groups was 7.6 months (n = 1550), 6.4 months (n = 692) and 8.4 months (n = 83), respectively. In patients with EGFR exon 20 insertions (n = 23) and HER2 mutations (n = 12), median TTF exceeded 12 months.

    CONCLUSIONS: Patient outcomes in this study were similar to those reported in the analysis of the global NPU. Afatinib achieved clinical benefits in patients with refractory NSCLC. ORR and TTF were similar between patients with tumors harboring uncommon and common EGFR mutations.

  7. Passaro A, Wang J, Wang Y, Lee SH, Melosky B, Shih JY, et al.
    Ann Oncol, 2024 Jan;35(1):77-90.
    PMID: 37879444 DOI: 10.1016/j.annonc.2023.10.117
    BACKGROUND: Amivantamab plus carboplatin-pemetrexed (chemotherapy) with and without lazertinib demonstrated antitumor activity in patients with refractory epidermal growth factor receptor (EGFR)-mutated advanced non-small-cell lung cancer (NSCLC) in phase I studies. These combinations were evaluated in a global phase III trial.

    PATIENTS AND METHODS: A total of 657 patients with EGFR-mutated (exon 19 deletions or L858R) locally advanced or metastatic NSCLC after disease progression on osimertinib were randomized 2 : 2 : 1 to receive amivantamab-lazertinib-chemotherapy, chemotherapy, or amivantamab-chemotherapy. The dual primary endpoints were progression-free survival (PFS) of amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy. During the study, hematologic toxicities observed in the amivantamab-lazertinib-chemotherapy arm necessitated a regimen change to start lazertinib after carboplatin completion.

    RESULTS: All baseline characteristics were well balanced across the three arms, including by history of brain metastases and prior brain radiation. PFS was significantly longer for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy [hazard ratio (HR) for disease progression or death 0.48 and 0.44, respectively; P < 0.001 for both; median of 6.3 and 8.3 versus 4.2 months, respectively]. Consistent PFS results were seen by investigator assessment (HR for disease progression or death 0.41 and 0.38 for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy, respectively; P < 0.001 for both; median of 8.2 and 8.3 versus 4.2 months, respectively). Objective response rate was significantly higher for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (64% and 63% versus 36%, respectively; P < 0.001 for both). Median intracranial PFS was 12.5 and 12.8 versus 8.3 months for amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy versus chemotherapy (HR for intracranial disease progression or death 0.55 and 0.58, respectively). Predominant adverse events (AEs) in the amivantamab-containing regimens were hematologic, EGFR-, and MET-related toxicities. Amivantamab-chemotherapy had lower rates of hematologic AEs than amivantamab-lazertinib-chemotherapy.

    CONCLUSIONS: Amivantamab-chemotherapy and amivantamab-lazertinib-chemotherapy improved PFS and intracranial PFS versus chemotherapy in a population with limited options after disease progression on osimertinib. Longer follow-up is needed for the modified amivantamab-lazertinib-chemotherapy regimen.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links