Displaying all 6 publications

Abstract:
Sort:
  1. Ullah Z, Nawi I, Witjaksono G, Tansu N, Khattak MI, Junaid M, et al.
    Sensors (Basel), 2020 Jun 04;20(11).
    PMID: 32512718 DOI: 10.3390/s20113187
    Plasmonic antennas are attractive optical components of the optoelectronic devices, operating in the far-infrared regime for sensing and imaging applications. However, low optical absorption hinders its potential applications, and their performance is limited due to fixed resonance frequency. In this article, a novel gate tunable graphene-metal hybrid plasmonic antenna with stacking configuration is proposed and investigated to achieve tunable performance over a broad range of frequencies with enhanced absorption characteristics. The hybrid graphene-metal antenna geometry is built up with a hexagon radiator that is supported by the Al2O3 insulator layer and graphene reflector. This stacked structure is deposited in the high resistive Si wafer substrate, and the hexagon radiator itself is a sandwich structure, which is composed of gold hexagon structure and two multilayer graphene stacks. The proposed antenna characteristics i.e., tunability of frequency, the efficiency corresponding to characteristics modes, and the tuning of absorption spectra, are evaluated by full-wave numerical simulations. Besides, the unity absorption peak that was realized through the proposed geometry is sensitive to the incident angle of TM-polarized incidence waves, which can flexibly shift the maxima of the absorption peak from 30 THz to 34 THz. Finally, an equivalent resonant circuit model for the investigated antenna based on the simulations results is designed to validate the antenna performance. Parametric analysis of the proposed antenna is carried out through altering the geometric parameters and graphene parameters in the Computer Simulation Technology (CST) studio. This clearly shows that the proposed antenna has a resonance frequency at 33 THz when the graphene sheet Fermi energy is increased to 0.3 eV by applying electrostatic gate voltage. The good agreement of the simulation and equivalent circuit model results makes the graphene-metal antenna suitable for the realization of far-infrared sensing and imaging device containing graphene antenna with enhanced performance.
  2. Siddiqui MA, Khir MHM, Witjaksono G, Ghumman ASM, Junaid M, Magsi SA, et al.
    Foods, 2021 Oct 11;10(10).
    PMID: 34681455 DOI: 10.3390/foods10102405
    Adulteration of meat products is a delicate issue for people around the globe. The mixing of lard in meat causes a significant problem for end users who are sensitive to halal meat consumption. Due to the highly similar lipid profiles of meat species, the identification of adulteration becomes more difficult. Therefore, a comprehensive spectral detailing of meat species is required, which can boost the adulteration detection process. The experiment was conducted by distributing samples labeled as "Pure (80 samples)" and "Adulterated (90 samples)". Lard was mixed with the ratio of 10-50% v/v with beef, lamb, and chicken samples to obtain adulterated samples. Functional groups were discovered for pure pork, and two regions of difference (RoD) at wavenumbers 1700-1800 cm-1 and 2800-3000 cm-1 were identified using absorbance values from the FTIR spectrum for all samples. The principal component analysis (PCA) described the studied adulteration using three principal components with an explained variance of 97.31%. The multiclass support vector machine (M-SVM) was trained to identify the sample class values as pure and adulterated clusters. The acquired overall classification accuracy for a cluster of pure samples was 81.25%, whereas when the adulteration ratio was above 10%, 71.21% overall accuracy was achieved for a group of adulterated samples. Beef and lamb samples for both adulterated and pure classes had the highest classification accuracy value of 85%, whereas chicken had the lowest value of 78% for each category. This paper introduces a comprehensive spectrum analysis for pure and adulterated samples of beef, chicken, lamb, and lard. Moreover, we present a rapid M-SVM model for an accurate classification of lard adulteration in different samples despite its low-level presence.
  3. Rahman MO, Nor NBM, Sawaran Singh NS, Sikiru S, Dennis JO, Shukur MFBA, et al.
    Nanomaterials (Basel), 2023 Feb 08;13(4).
    PMID: 36839033 DOI: 10.3390/nano13040666
    Graphene and its derivatives have emerged as peerless electrode materials for energy storage applications due to their exclusive electroactive properties such as high chemical stability, wettability, high electrical conductivity, and high specific surface area. However, electrodes from graphene-based composites are still facing some substantial challenges to meet current energy demands. Here, we applied one-pot facile solvothermal synthesis to produce nitrogen-doped reduced graphene oxide (N-rGO) nanoparticles using an organic solvent, ethylene glycol (EG), and introduced its application in supercapacitors. Electrochemical analysis was conducted to assess the performance using a multi-channel electrochemical workstation. The N-rGO-based electrode demonstrates the highest specific capacitance of 420 F g-1 at 1 A g-1 current density in 3 M KOH electrolyte with the value of energy (28.60 Whkg-1) and power (460 Wkg-1) densities. Furthermore, a high capacitance retention of 98.5% after 3000 charge/discharge cycles was recorded at 10 A g-1. This one-pot facile solvothermal synthetic process is expected to be an efficient technique to design electrodes rationally for next-generation supercapacitors.
  4. Witjaksono G, Junaid M, Khir MH, Ullah Z, Tansu N, Saheed MSBM, et al.
    Molecules, 2021 Oct 25;26(21).
    PMID: 34770833 DOI: 10.3390/molecules26216424
    Graphene as a material for optoelectronic design applications has been significantly restricted owing to zero bandgap and non-compatible handling procedures compared with regular microelectronic ones. In this work, nitrogen-doped reduced graphene oxide (N-rGO) with tunable optical bandgap and enhanced electrical conductivity was synthesized via a microwave-assisted hydrothermal method. The properties of the synthesized N-rGO were determined using XPS, FTIR and Raman spectroscopy, UV/vis, as well as FESEM techniques. The UV/vis spectroscopic analysis confirmed the narrowness of the optical bandgap from 3.4 to 3.1, 2.5, and 2.2 eV in N-rGO samples, where N-rGO samples were synthesized with a nitrogen doping concentration of 2.80, 4.53, and 5.51 at.%. Besides, an enhanced n-type electrical conductivity in N-rGO was observed in Hall effect measurement. The observed tunable optoelectrical characteristics of N-rGO make it a suitable material for developing future optoelectronic devices at the nanoscale.
  5. Junaid M, Md Khir MH, Witjaksono G, Ullah Z, Tansu N, Saheed MSM, et al.
    Molecules, 2020 Sep 14;25(18).
    PMID: 32937975 DOI: 10.3390/molecules25184217
    In recent years, the field of nanophotonics has progressively developed. However, constant demand for the development of new light source still exists at the nanometric scale. Light emissions from graphene-based active materials can provide a leading platform for the development of two dimensional (2-D), flexible, thin, and robust light-emitting sources. The exceptional structure of Dirac's electrons in graphene, massless fermions, and the linear dispersion relationship with ultra-wideband plasmon and tunable surface polarities allows numerous applications in optoelectronics and plasmonics. In this article, we present a comprehensive review of recent developments in graphene-based light-emitting devices. Light emissions from graphene-based devices have been evaluated with different aspects, such as thermal emission, electroluminescence, and plasmons assisted emission. Theoretical investigations, along with experimental demonstration in the development of graphene-based light-emitting devices, have also been reviewed and discussed. Moreover, the graphene-based light-emitting devices are also addressed from the perspective of future applications, such as optical modulators, optical interconnects, and optical sensing. Finally, this review provides a comprehensive discussion on current technological issues and challenges related to the potential applications of emerging graphene-based light-emitting devices.
  6. Aboul-Soud MAM, Ashour AE, Challis JK, Ahmed AF, Kumar A, Nassrallah A, et al.
    Plants (Basel), 2020 Sep 30;9(10).
    PMID: 33008079 DOI: 10.3390/plants9101295
    Organic fractions and extracts of willow (Salix safsaf) leaves, produced by sequential solvent extraction as well as infusion and decoction, exhibited anticancer potencies in four cancerous cell lines, including breast (MCF-7), colorectal (HCT-116), cervical (HeLa) and liver (HepG2). Results of the MTT assay revealed that chloroform (CHCl3) and ethyl acetate (EtOAc)-soluble fractions exhibited specific anticancer activities as marginal toxicities were observed against two non-cancerous control cell lines (BJ-1 and MCF-12). Ultra-high-resolution mass spectrometry Q-Exactive™ HF Hybrid Quadrupole-Orbitrap™ coupled with liquid chromatography (UHPLC) indicated that both extracts are enriched in features belonging to major phenolic and purine derivatives. Fluorescence-activated cell sorter analysis (FACS), employing annexin V-FITC/PI double staining indicated that the observed cytotoxic potency was mediated via apoptosis. FACS analysis, monitoring the increase in fluorescence signal, associated with oxidation of DCFH to DCF, indicated that the mechanism of apoptosis is independent of reactive oxygen species (ROS). Results of immunoblotting and RT-qPCR assays showed that treatment with organic fractions under investigation resulted in significant up-regulation of pro-apoptotic protein and mRNA markers for Caspase-3, p53 and Bax, whereas it resulted in a significant reduction in amounts of both protein and mRNA of the anti-apoptotic marker Bcl-2. FACS analysis also indicated that pre-treatment and co-treatment of human amniotic epithelial (WISH) cells exposed to the ROS H2O2 with EtOAc fraction provide a cytoprotective and antioxidant capacity against generated oxidative stress. In conclusion, our findings highlight the importance of natural phenolic and flavonoid compounds with unparalleled and unique antioxidant and anticancer properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links