Displaying all 6 publications

Abstract:
Sort:
  1. Sow AY, Ismail A, Zulkifli SZ
    Bull Environ Contam Toxicol, 2013 Jul;91(1):6-12.
    PMID: 23666324 DOI: 10.1007/s00128-013-1009-4
    Livers and muscles of swamp eels (Monopterus albus) were analyzed for bioaccumulation of heavy metals during the plowing stage of a paddy cycle. Results showed heavy metals were bioaccumulated more highly in liver than muscle. Zinc (Zn) was the highest bioaccumulated metal in liver (98.5 ± 8.95 μg/g) and in muscle (48.8 ± 7.17 μg/g). The lowest bioaccumulated metals were cadmium (Cd) in liver (3.44 ± 2.42 μg/g) and copper (Cu) in muscle (0.65 ± 0.20 μg/g). In sediments, Zn was present at the highest mean concentration (52.7 ± 2.85 μg/g), while Cd had the lowest mean concentration (1.04 ± 0.24 μg/g). The biota-sediment accumulation factor (BSAF) for Cu, Zn, Cd and nickel (Ni) in liver tissue was greater than the corresponding BSAF for muscle tissue. For the three plowing stages, metal concentrations were significantly correlated between liver and muscle tissues in all cases, and between sediment and either liver or muscle in most cases. Mean measured metal concentrations in muscle tissue were below the maximum permissible limits established by Malaysian and U.S. governmental agencies, and were therefore regarded as safe for human consumption.
  2. Sow AY, Ismail A, Zulkifli SZ
    Environ Sci Pollut Res Int, 2013 Dec;20(12):8964-73.
    PMID: 23757028 DOI: 10.1007/s11356-013-1857-9
    The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.
  3. Sow AY, Dee KH, Lee SW, Eh Rak AAL
    ScientificWorldJournal, 2019;2019:1615298.
    PMID: 31379469 DOI: 10.1155/2019/1615298
    High population density and economic development attributing to the changes in water quality in Pa Sak River, Lopburi River, and Mekong River have attracted great attention. This research aimed to determine the pollution of heavy metals in collected clams at three different study sites. Bioaccumulation of heavy metals in Asian clam (Corbicula fluminea) may be likely to cause serious health effects on human beings. The clams sampled from three different rivers (Mekong, Pa Sak, and Lopburi) from Thailand were analyzed for the presence of heavy metals (Zn, Cu, Cd, Cr, Mn, and Pb) with an air-acetylene flame atomic absorption spectrophotometer (AAS). Among the heavy metals studied, Zn was recorded as having the highest concentration (127.33-163.65 μg/g) among the three rivers. The observed mean concentration of Cu was in the range of 84.61-127.15 μg/g followed by Mn (13.96-100.63 μg/g), Cr (5.79-15.00 μg/g), Pb (3.43-8.55 μg/g), and Cd (0.88-1.95 μg/g). Overall, Asian clam from Pa Sak River was found to contain high concentrations of Zn, Cu, Cd, Cr, and Pb compared to Mekong and Lopburi River.
  4. Sow AY, Ismail A, Zulkifli SZ, Amal MN, Hambali KA
    Sci Rep, 2019 04 23;9(1):6391.
    PMID: 31015502 DOI: 10.1038/s41598-019-42753-2
    This work investigates the metals concentration in the tissues of Asian swamp eel, Monopterus albus. Five selected tissues, including liver, gill, bone, skin, and muscle were examined for the concentration of Zn, Cu, Cd, Pb, and Ni. The concentrations of Cd and Pb were found high in the muscle tissues of the eels. Additionally, high amounts of Zn and Cu metals were observed in the liver, whereas the Cd, Pb, and Ni metals were highly detected in gill. The accumulation of Zn, Cu, Cd, Pb, and Ni in both skin and bone of the eel seems to vary between seasons. Low levels of Zn, Cu, and Ni were identified in the muscle tissues of the eels. This study revealed that the concentration of Cd and Pb in the muscle tissues of Asian swamp eels exceeded the permissible limits by the US EPA, suggesting the consumption of the muscle may be hazardous and can severely affect one's health.
  5. Hassim NA, Hambali K, Idris NSU, Amir A, Ismail A, Zulkifli SZ, et al.
    Trop Life Sci Res, 2018 Jul;29(2):175-186.
    PMID: 30112148 MyJurnal DOI: 10.21315/tlsr2018.29.2.12
    Long-tailed macaque (Macaca fascicularis) has the potential to be a good biological indicator for toxic exposure because they have an almost similar physiology and behaviour to humans. The objective of this study is to determine the concentration of lead (Pb) in hair samples of long-tailed macaques which were found in and out of the Kuala Selangor Nature Park (KSNP) area. The hypothesis is long-tailed macaques that live in the anthropogenic area (outside KSNP) may be exposed to high levels of lead compared to long-tailed macaques living in the forest area (inside KSNP). Analysis of hair samples were carried out using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The study found that the average mean of lead concentration in the anthropogenic area is 6.31 μg/g while for the forest area it is 3.16 μg/g. Lead concentration in the two areas are statistically insignificant. Nevertheless, lead concentration in the anthropogenic area recorded a slightly higher mean concentration than in the forest area. Even so, results of this study indicate that long-tailed macaques in Kuala Selangor are not exposed to high levels of lead. This study is the first in Malaysia to utilise long-tailed macaques as a biological indicator for testing the concentration of toxic substances in the environment. This study is still in its early stages; thus, future research requires improvements.
  6. Sow AY, Ismail A, Zulkifli SZ, Amal MN, Hambali K
    BMC Pharmacol Toxicol, 2019 Jan 29;20(1):8.
    PMID: 30696486 DOI: 10.1186/s40360-019-0286-x
    BACKGROUND: Levels of toxic metal exposure in indigenous inhabitants are key bioindicators of the severity of environmental contamination. This study measured the seasonal variation of heavy metals and metallothionein (MT) contents in Asian swamp eels (Monopterus albus) from a paddy field situated in Tumpat, Kelantan, Malaysia, to identify prevalence, patterns and associations and togain insight on the suitability of MT as a biomarker for metal exposure.

    METHODS: Gill, muscle and liver tissues of M. albus (n = 50) sampled during the ploughing, seedling, growing and harvesting phases of rice growing were collected. The concentrations of copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and cadmium (Cd) in these tissues were determined by flame atomic absorption spectrometry. MT from each sample was isolated and purified, and subsequently quantitated using UV spectrophotometry. Associations between metal and MT concentrations, season and tissue type were evaluated using Pearson correlation and ANOVA with post-hoc Tukey HSD analysis.

    RESULTS: Zn was present in higher quantities in gill and liver tissues, while Cu levels were elevated solely in liver. Patterns of non-essential metal accumulation were varied: Cd was detected in low concentrations in all tissues, while Pb and Ni were abundant in gill tissues across all seasons. MT concentration in liver tissue was consistently higher than that found in muscle or gill tissue, except during the growing phase. Moreover, significant correlations (P 

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links