Displaying all 5 publications

Abstract:
Sort:
  1. Zhang J, Patwary AK, Sun H, Raza M, Taghizadeh-Hesary F, Iram R
    J Environ Manage, 2021 Feb 01;279:111704.
    PMID: 33348188 DOI: 10.1016/j.jenvman.2020.111704
    Given the economic growth and energy consumption patterns, most countries are striving to solve the problems of CO2 emissions reduction to achieve sustainable development. This paper employs an improved DEA model to measure energy and environmental efficiency for some selected countries in central and western Europe. In addition, the DEA window evaluation technique is applied to measure cross-sectional efficiency using two inputs (energy consumption, labor force), a desirable output (gross domestic product), and an undesirable output (CO2 emission) for the period from 2010 to 2014. The study finds that the UK ranks the highest position in term of energy and environmental efficiency. This shows that the UK has more effective policies regarding energy efficiency, consumption, production, import and energy intensity measures for sustainable economic growth as well as environmental protection. Ireland is the second-best country after the United Kingdom. The efficiency scores of the two countries are 0.99 and 0.89 respectively. On the empirical outcomes, this study suggests effective reforms in energy sector for countries with less energy efficiency that are still facing the problem of environmental degradation.
  2. Ding Y, Chin L, Taghizadeh-Hesary F, Abdul-Rahim AS, Deng P
    Environ Sci Pollut Res Int, 2023 Dec;30(59):123067-123082.
    PMID: 37979120 DOI: 10.1007/s11356-023-31069-4
    This study utilized panel data from 132 countries spanning from 1996 to 2019 to examine the effect of government efficiency on carbon emission intensity. Using a fixed effect model, the study found that stronger government efficiency is associated with a significant decrease in carbon emission intensity. Robustness tests were performed, the results of which consistently supported the main findings. Additionally, the study investigated the mechanisms underlying the linkage between government efficiency and carbon emission intensity, revealing that improved government efficiency can inhibit carbon emission intensity by fostering environmental innovation and promoting renewable energy consumption. Finally, the study examined the moderating effects of national income level, economic freedom, democracy, and ruling party ideology on the nexus of government efficiency and carbon emission intensity, and found empirical evidence supporting these moderating effects. These results provide new insights for governments seeking to reduce carbon emission intensity.
  3. Ashique S, Mishra N, Mohanto S, Garg A, Taghizadeh-Hesary F, Gowda BHJ, et al.
    Heliyon, 2024 Feb 29;10(4):e25754.
    PMID: 38370192 DOI: 10.1016/j.heliyon.2024.e25754
    The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.
  4. Ashique S, Mishra N, Garg A, Kumar N, Khan Z, Mohanto S, et al.
    Arch Bronconeumol, 2024 May 06.
    PMID: 38755052 DOI: 10.1016/j.arbres.2024.04.030
    Lung cancer remains the leading cause of cancer-related deaths worldwide. According to the American Cancer Society (ACS), it ranks as the second most prevalent type of cancer globally. Recent findings have highlighted bidirectional gut-lung interactions, known as the gut-lung axis, in the pathophysiology of lung cancer. Probiotics are live microorganisms that boost host immunity when consumed adequately. The immunoregulatory mechanisms of probiotics are thought to operate through the generation of various metabolites that impact both the gut and distant organs (e.g., the lungs) through blood. Several randomized controlled trials have highlighted the pivotal role of probiotics in gut health especially for the prevention and treatment of malignancies, with a specific emphasis on lung cancer. Current research indicates that probiotic supplementation positively affects patients, leading to a suppression in cancer symptoms and a shortened disease course. While clinical trials validate the therapeutic benefits of probiotics, their precise mechanism of action remains unclear. This narrative review aims to provide a comprehensive overview of the present landscape of probiotics in the management of lung cancer.
  5. Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, et al.
    Eur J Pharmacol, 2024 Oct 15;981:176906.
    PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906
    Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links